5,101 research outputs found

    Large-scale magnetic fields, curvature fluctuations and the thermal history of the Universe

    Get PDF
    It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine non-adiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions.Comment: 21 pages, 6 included figure

    Nonequilibrium corrections to energy spectra of massive particles in expanding universe

    Get PDF
    Deviations from kinetic equilibrium of massive particles caused by the universe expansion are calculated analytically in the Boltzmann approximation. For the case of an energy independent amplitude of elastic scattering, an exact partial differential equation is derived instead of the usual integro-differential one. A simple perturbative solution of the former is found. For the case of an energy-dependent amplitude the problem cannot be reduced to the differential equation but the solution of the original integro-differential equation can be found in terms of the Taylor expansion, which in the case of aconstant amplitude shows a perfect agreement with the perturbative solution of the differential equation. Corrections to the spectrum of (possibly) massive tau-neutrinos are calculated. The method may be of more general interest and can be applied to the calculation of spectrum distortion in other (not necessarily cosmological) nonequilibrium processes.Comment: 14 pages, latex twice; ps-files for figures are available upon reques

    Evolution of low-frequency features in the CMB spectrum due to stimulated Compton scattering and Doppler-broadening

    Full text link
    We discuss a new solution of the Kompaneets-equation for physical situations in which low frequency photons, forming relatively narrow spectral details, are Compton scattered in an isotropic, infinite medium with an intense ambient blackbody field that is very close to full thermodynamic equilibrium with the free electrons. In this situation the background-induced stimulated Compton scattering slows down the motion of photons toward higher frequencies by a factor of 3 in comparison with the solution that only takes into account Doppler-broadening and boosting. This new solution is important for detailed computations of cosmic microwave background spectral distortions arising due to uncompensated atomic transitions of hydrogen and helium in the early Universe. In addition we derive another analytic solution that only includes the background-induced stimulated Compton scattering and is valid for power-law ambient radiation fields. This solution might have interesting applications for radio lines arising inside of bright extra-galactic radio source, where according to our estimates line shifts because of background-induced stimulated scattering could be amplified and even exceed the line broadening due to the Doppler-effect.Comment: 5 pages, 2 figures, submitted to A&

    Dynamical suppression of non-adiabatic modes

    Get PDF
    Recent analyses of the WMAP 5-year data constrain possible non-adiabatic contributions to the initial conditions of CMB anisotropies. Depending upon the early dynamics of the plasma, the amplitude of the entropic modes can experience a different suppression by the time of photon decoupling. Explicit examples of the latter observation are presented both analytically and numerically when the post-inflationary dynamics is dominated by a stiff contribution.Comment: 9 pages, four figure

    Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters

    Full text link
    Galaxy clusters are one of the most promising candidate sites for dark matter annihilation. We focus on dark matter with mass in the range 10 GeV - 100 TeV annihilating to muon pairs, neutrino pairs, top pairs, or two neutrino pairs, and forecast the expected sensitivity to the annihilation cross section into these channels by observing galaxy clusters at IceCube/KM3NeT. Optimistically, the presence of dark matter substructures in galaxy clusters is predicted to enhance the signal by 2-3 orders of magnitude over the contribution from the smooth component of the dark matter distribution. Optimizing for the angular size of the region of interest for galaxy clusters, the sensitivity to the annihilation cross section of heavy DM with mass in the range 300 GeV - 100 TeV will be of the order of 10^{-24} cm^3 s^{-1}, for full IceCube/KM3NeT live time of 10 years, which is about one order of magnitude better than the best limit that can be obtained by observing the Milky Way halo. We find that neutrinos from cosmic ray interactions in the galaxy cluster, in addition to the atmospheric neutrinos, are a source of background. We show that significant improvement in the experimental sensitivity can be achieved for lower DM masses in the range 10 GeV - 300 GeV if neutrino-induced cascades can be reconstructed to approximately 5 degrees accuracy, as may be possible in KM3NeT. We therefore propose that a low-energy extension "KM3NeT-Core", similar to DeepCore in IceCube, be considered for an extended reach at low DM masses.Comment: v2: 17 pages, 5 figures. Neutrino spectra corrected, dependence on dark matter substructure model included, references added. Results unchanged. Accepted in PR

    Spontaneous CP Symmetry Breaking at the Electroweak Scale

    Full text link
    We present a top-condensation model in which the CP symmetry is spontaneously broken at the electroweak scale due to the condensation of two composite Higgs doublets. In particular the CP-violating phase of the CKM matrix is generated. A simpler model where only one quark family is included is also discussed. In this case, for a general four-fermion interaction (Gtb0G_{tb}\neq 0), the particle spectrum is the one of the one Higgs doublet model.Comment: 25 pages, LaTeX. References and comment adde

    Escape of black holes from the brane

    Full text link
    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation, that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the `black hole plus brane' system evolves once the black hole is given an initial velocity, that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.Comment: 4 pages, 6 figure

    Lepton asymmetries and the growth of cosmological seed magnetic fields

    Get PDF
    Primordial cosmological hypermagnetic fields polarize the early Universe plasma prior to the electroweak phase transition (EWPT). As a result of the long range parity violating gauge interaction present in the Standard Model their magnitude gets amplified, opening a new, perturbative way, of accounting for the observed intergalactic magnetic fields.Comment: 4 pages, no figures, final published version available online at http://www.iop.org/EJ/abstract/1029-8479/2008/03/06

    Lepton Flavor Violation without Supersymmetry

    Get PDF
    We study the lepton flavor violating (LFV) processes mu -> e gamma, mu -> 3e, and mu -> e conversion in nuclei in the left-right symmetric model without supersymmetry and perform the first complete computation of the LFV branching ratios B(mu -> f) to leading non-trivial order in the ratio of left- and right-handed symmetry breaking scales. To this order, B(mu -> e gamma) and B(mu -> e) are governed by the same combination of LFV violating couplings, and their ratio is naturally of order unity. We also find B(mu -> 3 e)/B(mu -> e) \sim 100 under slightly stronger assumptions. Existing limits on the branching ratios already substantially constrain mass splittings and/or mixings in the heavy neutrino sector. When combined with future collider studies and precision electroweak measurements, improved limits on LFV processes will test the viability of low-scale, non-supersymmetric LFV scenarios.Comment: 24 pages, 7 figures, 2 table

    WIMP Annihilation and Cooling of Neutron Stars

    Get PDF
    We study the effect of WIMP annihilation on the temperature of a neutron star. We shall argue that the released energy due to WIMP annihilation inside the neutron stars, might affect the temperature of stars older than 10 million years, flattening out the temperature at 104\sim 10^4 K for a typical neutron star.Comment: 20 pages, 2 figure
    corecore