21,009 research outputs found
Efficacy of Ultrasound-guided Radiofrequency Ablation of Parathyroid Hyperplasia: Single Session vs. Two-Session for Effect on Hypocalcemia
To evaluate safety and efficacy of one- vs. two-session radiofrequency ablation (RFA) of parathyroid hyperplasia for patients with secondary hyperparathyroidism (SHPT) and to compare the outcome of both methods on hypocalcemia. Patients with secondary hyperparathyroidism underwent ultrasound guided RFA of parathyroid hyperplasia. Patients were alternately assigned to either group 1 (n = 28) with RFA of all 4 glands in one session or group 2 (n = 28) with RFA of 2 glands in a first session and other 2 glands in a second session. Serum parathyroid hormone (PTH), calcium, phosphorus and alkaline phosphatase (ALP) values were measured at a series of time points after RFA. RFA parameters, including operation duration and ablation time and hospitalization length and cost, were compared between the two groups. Mean PTH decreased in group 1 from 1865.18 ± 828.93 pg/ml to 145.72 ± 119.27 pg/ml at 1 day after RFA and in group 2 from 2256.64 ± 1021.72 pg/ml to 1388.13 ± 890.15 pg/ml at 1 day after first RFA and to 137.26 ± 107.12 pg/ml at 1 day after second RFA. Group 1\u27s calcium level decreased to 1.79 ± 0.31 mmol/L at day 1 after RFA and group 2 decreased to 1.89 ± 0.26 mmol/L at day 1 after second session RFA (P \u3c 0.05). Multivariate analysis showed that hypocalcemia was related to serum ALP. Patients with ALP ≥ 566 U/L had lower calcium compared to patients with ALP \u3c 566 U/L up to a month after RFA (P \u3c 0.05). Group 1\u27s RFA time and hospitalization were shorter and had lower cost compared with Group 2. US-guided RFA of parathyroid hyperplasia is a safe and effective method for treating secondary hyperparathyroidism. Single-session RFA was more cost-effective and resulted in a shorter hospital stay compared to two sessions. However, patients with two-session RFA had less hypocalcemia, especially those with high ALP
Semi-Supervised Self-Taught Deep Learning for Finger Bones Segmentation
Segmentation stands at the forefront of many high-level vision tasks. In this
study, we focus on segmenting finger bones within a newly introduced
semi-supervised self-taught deep learning framework which consists of a student
network and a stand-alone teacher module. The whole system is boosted in a
life-long learning manner wherein each step the teacher module provides a
refinement for the student network to learn with newly unlabeled data.
Experimental results demonstrate the superiority of the proposed method over
conventional supervised deep learning methods.Comment: IEEE BHI 2019 accepte
Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses
Waveform-controlled Terahertz (THz) radiation is of great importance due to
its potential application in THz sensing and coherent control of quantum
systems. We demonstrated a novel scheme to generate waveform-controlled THz
radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized
few-cycle laser pulses undergo filamentation in ambient air. We launched
CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\mu}m
into air and found that the generated THz waveform can be controlled by varying
the filament length and the CEP of driving laser pulses. Calculations using the
photocurrent model and including the propagation effects well reproduce the
experimental results, and the origins of various phase shifts in the filament
are elucidated.Comment: 5pages, 5 figure
Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR
A novel compact-size branch-line coupler using composite right/left-handed transmission lines is proposed in this paper. In order to obtain miniaturization, composite right/left-handed transmission lines with novel complementary split single ring resonators which are realized by loading a pair of meander-shaped-slots in the split of the ring are designed. This novel coupler occupies only 22.8% of the area of the conventional approach at 0.7 GHz. The proposed coupler can be implemented by using the standard printed-circuit-board etching processes without any implementation of lumped elements and via-holes, making it very useful for wireless communication systems. The agreement between measured and stimulated results validates the feasible configuration of the proposed coupler
Kernel solver design of FPGA-based real-time simulator for active distribution networks
The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper, a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to meet the computational demand. The framework of the solver, offline process design on PC and online process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC under the same conditions to validate the solver design
- …
