49 research outputs found
Fate and occurrence of indoxacarb during radish cultivation for multi-risk assessment
Agrochemical indoxacarb is an important tool for selective pest control in radish that be consumed globally. A rapid and sensitive analytical method UHPLC–MS/MS was developed for tracing indoxacarb in radish leaves and roots with LOQ of 0.001 mg/kg and RT within 2 min, which were confirmed the satisfied storage stability of indoxacarb in radish matrixes with degradation rates less than 30 %. The occurrence, pharmacokinetics dissipation and concentration variation of indoxacarb were reflected by the original deposition of 2.23–4.12 mg/kg, half–lives of 2.6–8.0 d and terminal magnitude of 0.17 × 10–2–25.46 mg/kg in radish, and the influencing factors were further illustrated in terms of climate factors, crop cultivars and soil properties. The highest residues of indoxacarb were 25.46 mg/kg in leaves and 0.12 mg/kg in roots, which were higher than international maximum residue limits. A probabilistic model, as well as deterministic model, were introduced to evaluated the health risks of indoxacarb offering a better description for uncertainty. The total chronic dietary risk values of indoxacarb were 146.961–482.065 % in 12 registered crops, of which ADI % in radish was accounted for 19.8 % with risk dilution effects. The unacceptable acute dietary risks of 121.358–220.331 % were observed at 99.9th percentile, whereas the high–potential non-carcinogenic effects were observed over 90th percentile (105.035–1121.943 %). The health risks should be continuously emphasized given the increasing applications and persistent characteristics of indoxacarb, which is vital to protect the human population from hazardous effects, particularly for vulnerable children
A Nationwide Study of Residual Fate of Fluxapyroxad and Its Metabolites in Peanut Crops Across China: Assessment of Human Exposure Potential
Elaborating on the residual fate of fluxapyroxad and its metabolites based on their nationwide application was vital to protect the human population from their hazardous effects. In this study, a rapid and sensitive analytical method was developed to trace fluxapyroxad and two of its metabolites in peanut matrices using an ultrahigh chromatography method coupled with mass spectrometry (UHPLC–MS/MS) within 3.5 min. The occurrence, pharmacokinetic degradation and terminal magnitudes of fluxapyroxad were reflected in the original deposition of 8.41–38.15 mg/kg, half–lives of 2.5–8.6 d and final concentrations of 0.004–37.38 mg/kg in peanut straw. The total concentrations of fluxapyroxad in peanut straw (0.04–39.28 mg/kg) were significantly higher than those in peanut kernels (<0.001–0.005 mg/kg) and an obvious concentration effect was observed in fresh (0.01–11.56 mg/kg) compared dried peanut straw (0.04–38.97 mg/kg). Fluxapyroxad was demethylated to 3–(difluoromethyl)–N–(3′,4′,5′–trifluoro[1,1′–biphenyl]–2–yl)–1H–pyrazole–4–carboxamide (M700F008, 0.02–5.69 mg/kg) and further N–glycosylated to 3–(difluoromethyl)–1–(ß–D–glucopyranosyl)–N–(3′,4′,5′–triflurobipheny–2–yl)–1H–pyrzaole–4–carboxamide (M700F048, 0.04–39.28 mg/kg).The risk quotients of the total fluxapyroxad for the urban groups were significantly higher than those for the rural groups, and were both negatively correlated with the age of the groups, although both acute (ARfD%, 0.006–0.012%) and chronic (ADI%, 0.415–1.289%) risks are acceptable for the human population. The high-potential health risks of fluxapyroxad should be continuously emphasized for susceptible toddlers (1–3 years), especially those residing in urban areas.</jats:p
A Nationwide Study of Residual Fate of Fluxapyroxad and Its Metabolites in Peanut Crops Across China: Assessment of Human Exposure Potential
Elaborating on the residual fate of fluxapyroxad and its metabolites based on their nationwide application was vital to protect the human population from their hazardous effects. In this study, a rapid and sensitive analytical method was developed to trace fluxapyroxad and two of its metabolites in peanut matrices using an ultrahigh chromatography method coupled with mass spectrometry (UHPLC–MS/MS) within 3.5 min. The occurrence, pharmacokinetic degradation and terminal magnitudes of fluxapyroxad were reflected in the original deposition of 8.41–38.15 mg/kg, half–lives of 2.5–8.6 d and final concentrations of 0.004–37.38 mg/kg in peanut straw. The total concentrations of fluxapyroxad in peanut straw (0.04–39.28 mg/kg) were significantly higher than those in peanut kernels (<0.001–0.005 mg/kg) and an obvious concentration effect was observed in fresh (0.01–11.56 mg/kg) compared dried peanut straw (0.04–38.97 mg/kg). Fluxapyroxad was demethylated to 3–(difluoromethyl)–N–(3′,4′,5′–trifluoro[1,1′–biphenyl]–2–yl)–1H–pyrazole–4–carboxamide (M700F008, 0.02–5.69 mg/kg) and further N–glycosylated to 3–(difluoromethyl)–1–(ß–D–glucopyranosyl)–N–(3′,4′,5′–triflurobipheny–2–yl)–1H–pyrzaole–4–carboxamide (M700F048, 0.04–39.28 mg/kg).The risk quotients of the total fluxapyroxad for the urban groups were significantly higher than those for the rural groups, and were both negatively correlated with the age of the groups, although both acute (ARfD%, 0.006–0.012%) and chronic (ADI%, 0.415–1.289%) risks are acceptable for the human population. The high-potential health risks of fluxapyroxad should be continuously emphasized for susceptible toddlers (1–3 years), especially those residing in urban areas
Cationic polyacrylamide aerogel intercalated molybdenum disulfide for enhanced removal of Cr(VI) and organic contaminants
3D-STARNET: Spatial–Temporal Attention Residual Network for Robust Action Recognition
Existing skeleton-based action recognition methods face the challenges of insufficient spatiotemporal feature mining and a low efficiency of information transmission. To solve these problems, this paper proposes a model called the Spatial–Temporal Attention Residual Network for 3D human action recognition (3D-STARNET). This model significantly improves the performance of action recognition through the following three main innovations: (1) the conversion from skeleton points to heat maps. Using Gaussian transform to convert skeleton point data into heat maps effectively reduces the model’s strong dependence on the original skeleton point data and enhances the stability and robustness of the data; (2) a spatiotemporal attention mechanism (STA). A novel spatiotemporal attention mechanism is proposed, focusing on the extraction of key frames and key areas within frames, which significantly enhances the model’s ability to identify behavioral patterns; (3) a multi-stage residual structure (MS-Residual). The introduction of a multi-stage residual structure improves the efficiency of data transmission in the network, solves the gradient vanishing problem in deep networks, and helps to improve the recognition efficiency of the model. Experimental results on the NTU-RGBD120 dataset show that 3D-STARNET has significantly improved the accuracy of action recognition, and the top1 accuracy of the overall network reached 96.74%. This method not only solves the robustness shortcomings of existing methods, but also improves the ability to capture spatiotemporal features, providing an efficient and widely applicable solution for action recognition based on skeletal data
Enantioseparation and determination of isofenphos-methyl enantiomers in wheat, corn, peanut and soil with Supercritical fluid chromatography/tandem mass spectrometric method
Stereoselective analysis of novel chiral fungicide pyrisoxazole in cucumber, tomato and soil under different application methods with supercritical fluid chromatography/tandem mass spectrometry
Influence of Uptake Pathways on the Stereoselective Dissipation of Chiral Neonicotinoid Sulfoxaflor in Greenhouse Vegetables
Foxtail Millet Improves Blood Glucose Metabolism in Diabetic Rats through PI3K/AKT and NF-κB Signaling Pathways Mediated by Gut Microbiota
Foxtail millet (FM) is receiving ongoing increased attention due to its beneficial health effects, including the hypoglycemic effect. However, the underlying mechanisms of the hypoglycemic effect have been underexplored. In the present study, the hypoglycemic effect of FM supplementation was confirmed again in high-fat diet and streptozotocin-induced diabetic rats with significantly decreased fasting glucose (FG), glycated serum protein, and areas under the glucose tolerance test (p < 0.05). We employed 16S rRNA and liver RNA sequencing technologies to identify the target gut microbes and signaling pathways involved in the hypoglycemic effect of FM supplementation. The results showed that FM supplementation significantly increased the relative abundance of Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG and 2-h glucose. FM supplementation significantly reversed the trends of gene expression in diabetic rats. Specifically, FM supplementation inhibited gluconeogenesis, stimulated glycolysis, and restored fatty acid synthesis through activation of the PI3K/AKT signaling pathway. FM also reduced inflammation through inhibition of the NF-κB signaling pathway. Spearman’s correlation analysis indicated a complicated set of interdependencies among the gut microbiota, signaling pathways, and metabolic parameters. Collectively, the above results suggest that the hypoglycemic effect of FM was at least partially mediated by the increased relative abundance of Lactobacillus, activation of the PI3K/AKT signaling pathway, and inhibition of the NF-κB signaling pathway.</jats:p
