298 research outputs found
Simultaneous Structural Identification of Natural Products in Fractions of Crude Extract of the Rare Endangered Plant Anoectochilus roxburghii Using 1H NMR/RRLC-MS Parallel Dynamic Spectroscopy
Nuclear magnetic resonance/liquid chromatography-mass spectroscopy parallel dynamic spectroscopy (NMR/LC-MS PDS) is a method aimed at the simultaneous structural identification of natural products in complex mixtures. In this study, the method is illustrated with respect to 1H NMR and rapid resolution liquid chromatography-mass spectroscopy (RRLC-MS) data, acquired from the crude extract of Anoectochilus roxburghii, which was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. Through fraction ranges and intensity changing profiles in 1H NMR/RRLC–MS PDS spectrum, 1H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent, were correlated due to the signal amplitude co-variation resulting from the concentration variation of constituents in a series of incompletely separated fractions. 1H NMR/RRLC-MS PDS was then successfully used to identify three types of natural products, including eight flavonoids, four organic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in Anoectochilus roxburghii. In addition, two groups of co-eluted compounds were successfully identified. The results prove that this approach should be of benefit in the unequivocal structural determination of a variety of classes of compounds from extremely complex mixtures, such as herbs and biological samples, which will lead to improved efficiency in the identification of new potential lead compounds
A laboratory-friendly protocol for freeze-drying sample preparation in ToF-SIMS single-cell imaging
ToF-SIMS is a high spatial resolution imaging technique for cellular or subcellular analysis of biological samples. Accurate molecular data in single-cell studies depend on proper cell morphology and chemical integrity, highlighting the importance of sample preparation. In this work, we standardized a more efficient freeze-drying method using standard lab materials and improved the sample preparation process. Our comprehensive freeze-drying protocol for cellular samples, encompassing washing, fixation, and drying steps, facilitates the acquisition of enhanced cellular information and ensures high reproducibility. These improvements are poised to significantly advance single-cell mass spectrometry imaging research
Flux pinning by regular arrays of ferromagnetic dots
The pinning of flux lines by two different types of regular arrays of
submicron magnetic dots is studied in superconducting Pb films; rectangular Co
dots with in-plane magnetization are used as pinning centers to investigate the
influence of the magnetic stray field of the dots on the pinning phenomena,
whereas multilayered Co/Pt dots with out-of-plane magnetization are used to
study the magnetic interaction between the flux lines and the magnetic moment
of the dots. For both types of pinning arrays, matching anomalies are observed
in the magnetization curves versus perpendicular applied field at integer and
rational multiples of the first matching field, which correspond to stable flux
configurations in the artificially created pinning potential. By varying the
magnetic domain structure of the Co dots with in-plane magnetization, a clear
influence of the stray field of the dots on the pinning efficiency is found.
For the Co/Pt dots with out-of-plane magnetization, a pronounced field
asymmetry is observed in the magnetization curves when the dots are magnetized
in a perpendicular field prior to the measurement. This asymmetry can be
attributed to the interaction of the out-of-plane magnetic moment of the Co/Pt
dots with the local field of the flux lines and indicates that flux pinning is
stronger when the magnetic moment of the dot and the field of the flux line
have the same polarity.Comment: 7 pages including figures; submitted for publication in Physica C
(Proceedings ESF-Vortex Conference, 18-24 Sept. 1999, Crete, Greece
Mechanism of Ionization and Initial Fragmentation in Electron-Impact Mass Spectroscopy: Mass Spectra of Benzanthrones
departmental bulletin pape
Identification of Isomer Structures for Polycyclic Aromatic Compounds by Electron-Impact Mass Spectroscopy: Elimination Reaction of Hydrogen from Carbon Compounds Producing Graphite or Diamond
departmental bulletin pape
Investigation of the stoichiometry of MBE-grown Fe3O4 layers by magneto-optical Kerr spectroscopy
Sputtering pressure effect on microstructure of surface and interface, and on coercivity of Co/Pt multilayers
Magneto-optical recording media based on Co/Pt multilayers
Magnetic recording is nowadays the most widely used method for storing large amounts of data. A lot of effort is being spent on research on magnetic recording to increase the storage density. One principle cause, which limits the linear bit density in longitudinal recording systems, is the length of the magnetic transitions in the recording medium, due to demagnetizing forces. An answer to this problem is offered by perpendicular recording. Since the mid seventies there has been a growing interest in this recording mode. Because the magnetization of a perpendicular recording medium is oriented perpendicular to the substrate, the demagnetizing forces are strongly reduced in high-density recording. In part I of this thesis, the introduction, the principles of perpendicular recording are given and it is schematically shown that the transitions in a perpendicular recording medium can have negligible width, due to the favorable orientation of the magnetization. Also some complications are discussed, which may deteriorate the recording performance of the medium. The common core of these complications is formed by the longitudinal demagnetizing forces, which tend to close the magnetic flux within the medium. Certain cobalt-based alloys, having the hcp structure with perpendicular c-axis orientation, are suitable materials for a perpendicular recording medium. In practice the anisotropy axis coincides with the c-axis. The physical properties of these binary alloys, viz. the magnetization and the phase diagram, are discussed in chapter 4. The hysteresis loops of thin magnetic layers with perpendicular anisotropy is extensively treated in chapter 5. Two different models of magnetic microstructures are discussed, the stripe domain structure and colurnnar particle structure. The principal difference between these two structures is the way the short- range exchange forces extend through the medium. In the former these forces are able to extend throughout the medium, in which case the nucleation of a stripe domain pattern is a commonly observed microstructure in this kind of magnetic layers. In the latter the exchange forces are confined within the volume of the parti~les, which thus define the maximum size of magnetic domains. These physically opposite models are both investigated to find out how far they agree with the experimentally observed hysteretic properties of Co-Cr layers, which were used as recording medium in this work, and form a continuous theme throughout this thesis. The investigations on the Co-Cr medium are described in part II. First our investigations on the RF-sputter deposition of Co-Cr layers are reported in chapter 6. The morphology of the Co-Cr medium, as revealed by means of electron microscopy, is described in chapter 7. The medium appears to consist of columnarlike crystallites, which have grown perpendicular to the substrate (see fig.7.7). It is just this morphology, which strongly suggests a particulate structure because of the distinct profile of the crystallites. Chapter 8 contains the analysis of the magnetic anisotropy of the Co-Cr medium by means of torque and VSM measurements. Especially the magnitude of the anisotropy constants and the different causes of anisotropy were investigated. The intriguing question, whether the Co-Cr medium is .continuous. or .particulate., is discussed in chapter 9 on the basis of the perpendicular easy-axis loops. The experimental loops are compared with the theoretical results of chapter 5 and it appears that the continuous model agrees best with the experimental results. The coercivity of the Co-Cr medium is analysed in chapter 10, also on the basis of the continuous and the particulate models. It again appears that the continuous modeloffers the best explanation, in this case for the experimentallyobserved coercivity. An interim discussion is presented after chapter 10 in which a tentative description of the Co-Cr medium is given and the consequences for the recording behaviour are discussed. The contents of part III refer to investigations on the characteristics of perpendicular recording. The structure of magnetic transitions, which are induced by means of a single- pole type head into the Co-Cr medium, is investigated experimentally as well as theoretically and is described in chapter 12. In this analysis an accurate description of the head field is required, which is therefore first given in chapter 11
- …
