823 research outputs found

    Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea

    Get PDF
    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystem

    Nonischemic left ventricular scar and cardiac sudden death in the young

    Get PDF
    Nonischemic Left Ventricular Scar (NLVS) is a pattern of myocardial injury characterized by midventricular and/or subepicardial gadolinium hyper enhancement at cardiac magnetic resonance, in absence of significant coronary artery disease. We aimed to evaluate the prevalence of NLVS in juvenile sudden cardiac death and to ascertain its aetiology at autopsy. We examined 281 consecutive cases of sudden death of subjects aged 1 to 35 years of age. NLVS was defined as a thin, grey rim of subepicardial and/or midmyocardial scar in the left ventricular free wall and/or the septum, in absence of significant stenosis of coronary arteries. NLVS was the most frequent finding (25%) in sudden deaths occurring during sports. Myocardial scar was localized most frequently within the left ventricular posterior wall, and affected the subepicardial myocardium, often extending to the midventricular layer. On histology it consisted of fibrous or fibro-adipose tissue. Right ventricular involvement was always present. Patchy lymphocytic infiltrates were frequent. Genetic and molecular analyses clarified the aetiology of NLVS in a subset of cases. ECG recordings were available in over half of subjects. The most frequent abnormality was the presence of low QRS voltages (< 0,5 mV) in limb leads. In serial ECG tracings, the decrease in QRS voltages appeared, in some way progressive. NLVS is the most frequent morphologic substrate of juvenile cardiac sudden death in sports. It can be suspected based on ECG findings. Autopsy study and clinical screening of family members are required to differentiate between Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia and chronic acquired myocarditis

    The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging

    Get PDF
    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination. Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function. When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed. With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR

    Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica

    Get PDF
    Sediment-hosted hydrothermal vents, where hot, mineral-rich water flows through sediment, are poorly understood globally, both in their distribution and the ecology of individual vent fields. We explored macrofaunal community ecology at a sediment-hosted hydrothermal vent in the Southern Ocean. This is the first such study of these ecosystems outside of the Pacific and the furthest south (62˚S) of any vent system studied. Sedimentary fauna were sampled at four sites in the Bransfield Strait (Southern Ocean), with the aim of contrasting community structure between vent and non-vent sites. Geochemical data were used to create and test a novel proxy index to quantify the degree of hydrothermal influence and its influence on deep-sea biota. Macrofaunal communities were clearly distinct between vent and non-vent sites, and diversity, richness and density declined towards maximum hydrothermal activity. This variation is in contrast to observations from similar systems in the Pacific and demonstrates the influence of factors other than chemosynthetic primary productivity in structuring infauna at deep-sea vent communities. Vent endemic fauna had limited abundance and were represented by a single siboglinid species at hydrothermally active areas, meaning that that the majority of local biota were those also found in other areas. Several taxa occupied all sampling stations but there were large differences in their relative abundances, suggesting communities were structured by niche variation rather than dispersal ability

    Characteristics of meiofauna in extreme marine ecosystems: a review

    Get PDF
    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments

    Bioelectromethanogenesis reaction in a tubular Microbial Electrolysis Cell (MEC) for biogas upgrading

    Get PDF
    The utilization of a pilot scale tubular Microbial Electrolysis Cell (MEC), has been tested as an innovative biogas upgrading technology. The bioelectromethanogenesis reaction permits the reduction of the CO2 into CH4 by using a biocathode as electrons donor, while the electroactive oxidation of organic matter in the bioanode partially sustains the energy demand of the process. The MEC has been tested with a synthetic wastewater and biogas by using two different polarization strategies, i.e. the three-electrode configuration, in which a reference electrode is utilized to set the potential at a chosen value, and a two-electrode configuration in which a fixed potential difference is applied between the anode and the cathode. The tubular MEC showed that the utilization of a simple two electrode configuration does not allow to control the electrodic reaction in the anodic chamber, which causes the increase of the energy consumption of the process. Indeed, the most promising performances regarding the COD and CO2 removal have been obtained by controlling the anode potential at&nbsp;+0.2&nbsp;V vs SHE with a three electrode configuration, with an energy consumption of 0.47&nbsp;kWh/kgCOD and 0.33&nbsp;kWh/Nm3 of CO2 removed, which is a comparable energy consumption with respect the available technologies on the market

    Role of the Electroactive and Non-electroactive Surface Area (EASA and nEASA) for Electroactive Biofilms in Bioelectrochemical Systems

    Get PDF
    The role of the electroactive surface area (EASA) and of the non-electroactive surface area (nEASA) was studied to better understand electroactive biofilm’s (EAB) growth and performance in four different systems. Those systems consisted in four 1L glass bottles filled with mineral medium and substrates, a stainless-steel cathode and a bioanode. Four different types of bioanode were assembled in order to study the EASA and nEASA role. A potentiostat controlled the anodic potential, which was fixed in every system at + 0.2 V vs SHE (standard hydrogen electrode). To measure the EASA of every system, cyclic voltammetries (CVs) were carried out at different scan rates. Comparing them with the one obtained with a reference system, each EASA is easily calculated. The nEASA, instead, was measured calculating the geometric volume. The obtained results demonstrate the fundamental role of the EASA and, moreover, the necessity to reduce as much as possible the nEASA in order to enhance the performance

    The athlete after COVID-19 infection: what the scientific evidence? What to do? A position statement

    Get PDF
    The Coronavirus-19 disease (COVID-19) related pandemic have deeply impacted human health, economy, psychology and sociality. Possible serious cardiac involvement in the infection has been described, raising doubts about complete healing after the disease in many clinical settings. Moreover, there is the suspicion that the vaccines, especially those based on mRNA technology, can induce myopericarditis. Myocarditis or pericarditis related scars can represent the substrate for life-threatening arrhythmias, triggered by physical activity. A crucial point is how to evaluate an athlete after a COVID-19 infection ensuring a safe return to play without increasing the number of unnecessary disqualifications from sports competitions. The lack of conclusive scientific data significantly increases the difficulty to propose recommendations and guidelines on this topic. At the same time, the psychological and physical negative consequences of unnecessary sports restriction must be taken into account. The present document aims to provide an updated brief review of the current knowledge about the COVID-19 cardiac involvement and how to recognize it and to offer a roadmap for the management of the athletes after a COVID-19 infections, including subsequent impact on exercise recommendations. Our document exclusively refers to cardiovascular implications of the disease, but pulmonary consequences are also considered

    Renewable gases production coupled to synthetic wastewater treatment through a microbial electrolysis cell

    Get PDF
    This study describes the use of a microbial electrolysis cells for the production of gaseous biofuels sustained by the oxidation of a synthetic wastewater. During the overall experimental investigation, the MEC’s bioanode removed on average 855 ± 57 mgCOD/d producing an average electric current of 66 ± 7 mA which was diverted into gaseous biofuels like biomethane, biohydrogen and biohythane. Three different MEC cathodic configurations were investigated selecting the electrodic materials (graphite granules GG, and mixed metal oxide MMO) and operating conditions (pH of the catholyte, additional sorption chamber). Biomethane production increased from 26 ± 4–102 ± 8 meq/d when the MMO electrode was used with respect to GG electrodic material. In contrast, the MMO electrode in combination with a CO2 sorption chamber was successfully utilized for simultaneous H2 production and CO2 sorption from a N2/CO2 mixture which simulates an anaerobic digestion biogas. The combination of H2 production and CO2 sorption allowed to obtain a gaseous mixture composed of 9% H2, 5% CO2, and 80% N2 that according to the assumption of replacing the N2/CO2 mixture with real biogas corresponded to a commercial-grade biohythane. Overall, the results highlight the potential of MECs as an efficient approach for biogas upgrading, allowing biohythane production increasing CH4 content and lowering CO2 concentration
    corecore