959 research outputs found
Three-dimensional canine displacement patterns in response to translation and controlled tipping retraction strategies
OBJECTIVE: To validate whether applying a well-defined initial three-dimensional (3D) load can create consistently expected tooth movement in patients.
MATERIALS AND METHODS: Twenty-one patients who needed bilateral canine retraction to close extraction space were selected for this split-mouth clinical trial. After initial alignment and leveling, two canines in each patient were randomly assigned to receive either translation (TR) or controlled tipping (CT) load. The load was delivered by segmental T-loops designed to give specific initial moment/force ratios to the canines in each treatment interval (TI), verified with an orthodontic force tester. Maxillary dental casts were made before canine retraction and after each TI. The casts were digitized with a 3D laser scanner. The digital models were superimposed on the palatal rugae region. The 3D canine displacements and the displacement patterns in terms of TR, CT, and torque were calculated for each TI.
RESULTS: The method can reliably detect a TR displacement greater than 0.3 mm and a rotation greater than 1.5°. Ninety-two TIs had displacements that were greater than 0.3 mm and were used for further analysis. Most displacements were oriented within ±45° from the distal direction. The displacement pattern in terms of TR or CT was not uniquely controlled by the initial moment/force ratio.
CONCLUSIONS: The initial load system is not the only key factor controlling tooth movement. Using a segmental T-loop with a well-controlled load system, large variations in canine displacement can be expected clinically
Near-Unitary Spin Squeezing in Yb
Spin squeezing can improve atomic precision measurements beyond the standard
quantum limit (SQL), and unitary spin squeezing is essential for improving
atomic clocks. We report substantial and nearly unitary spin squeezing in
Yb, an optical lattice clock atom. The collective nuclear spin of atoms is squeezed by cavity feedback, using light detuned from the
system's resonances to attain unitarity. The observed precision gain over the
SQL is limited by state readout to 6.5(4) dB, while the generated states offer
a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a
squeezed state within 30% of unitarity, we demonstrate an interferometer that
improves the averaging time over the SQL by a factor of 3.7(2). In the future,
the squeezing can be simply transferred onto the optical clock transition of
Yb.Comment: 5 pages, 4 figure
Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment
Processing of digital images is continuously gaining in volume and relevance,
with concomitant demands on data storage, transmission and processing power.
Encoding the image information in quantum-mechanical systems instead of
classical ones and replacing classical with quantum information processing may
alleviate some of these challenges. By encoding and processing the image
information in quantum-mechanical systems, we here demonstrate the framework of
quantum image processing, where a pure quantum state encodes the image
information: we encode the pixel values in the probability amplitudes and the
pixel positions in the computational basis states. Our quantum image
representation reduces the required number of qubits compared to existing
implementations, and we present image processing algorithms that provide
exponential speed-up over their classical counterparts. For the commonly used
task of detecting the edge of an image, we propose and implement a quantum
algorithm that completes the task with only one single-qubit operation,
independent of the size of the image. This demonstrates the potential of
quantum image processing for highly efficient image and video processing in the
big data era.Comment: 13 pages, including 9 figures and 5 appendixe
Webots-based Simulator for Biped Navigation in Human-living Environments
Navigation is one of the key issues of biped robot, especially in complicated and uncertain human-living environment. There have been challenges for ensuring the stability, efficiency and security of the biped navigation system. In this paper, a framework utilizing sampling-based footstep planner is proposed for the simulation of the biped navigation. Sensor fusion method is adopted to process and generate the correlated environment information for footstep planning. Two specific experiments have been conducted to validate the functionality and performance of the proposed framework
Hounsfield unit change in root and alveolar bone during canine retraction
INTRODUCTION: The objective of this study was to determine the Hounsfield unit (HU) changes in the alveolar bone and root surfaces during controlled canine retractions.
METHODS: Eighteen maxillary canine retraction patients were selected for this split-mouth design clinical trial. The canines in each patient were randomly assigned to receive either translation or controlled tipping treatment. Pretreatment and posttreatment cone-beam computed tomography scans of each patient were used to determine tooth movement direction and HU changes. The alveolar bone and root surface were divided into 108 divisions, respectively. The HUs in each division were measured. Mixed-model analysis of variance was applied to test the HU change distribution at the P <0.05 significance level.
RESULTS: The HU changes varied with the directions relative to the canine movement. The HU reductions occurred at the root surfaces. Larger reductions occurred in the divisions that were perpendicular to the moving direction. However, HUs decreased in the alveolar bone in the moving direction. The highest HU reduction was at the coronal level.
CONCLUSIONS: HU reduction occurs on the root surface in the direction perpendicular to tooth movement and in the alveolar bone in the direction of tooth movement when a canine is retracted
Risk Analysis of Shanghai Inter-Bank Offered Rate - A GARCH-VaR Approach
The inter-bank offered rate widely used by Chinese commercial banks is Shanghai Inter-Bank Offered Rate (Shibor). Shibor has experienced significant development since it was created. It offers different products by duration. Despite its importance in China’s financial market, Shibor’s risk has largely remained unexplored. Making contribution to existing literature on risk management of Shibor, this paper investigates risk of Shanghai Inter- Bank Offered Rate (Shibor) utilizing GARCH-VaR method. The VaR of each product is calculated and compared while GARCH model is designed for a simpler calculation. In order to have a clearer view of Chinese commercial banks, the data selected is Shibor data sample from 2006 to 2016, which is measured by GARCH-VaR model and verified effectiveness by chi-square test. Empirical results show strong evidence for the need of Chinese commercial banks to change the status quo so that the great fluctuation and abnormal situation can be avoided. Policy implication, involving the interest rate management and internal problem in commercial banks, is proposed for financial regulators
Site-Specific Chemoenzymatic Labeling of Aerolysin Enables the Identification of New Aerolysin Receptors
Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.National Institutes of Health (U.S.) (grant R01 AI087879
Coverage Performance Analysis of Reconfigurable Intelligent Surface-aided Millimeter Wave Network with Blockage Effect
In order to solve spectrum resource shortage and satisfy immense wireless data traffic demands, millimeter wave (mmWave) frequency with large available bandwidth has been proposed for wireless communication in 5G and beyond 5G. However, mmWave communications are susceptible to blockages. This characteristic limits the network performance. Meanwhile, reconfigurable intelligent surface (RIS) has been proposed to improve the propagation environment and extend the network coverage. Unlike traditional wireless technologies that improve transmission quality from transceivers, RISs enhance network performance by adjusting the propagation environment. One of the promising applications of RISs is to provide indirect line-of-sight (LoS) paths when the direct LoS path between transceivers does not exist. This application makes RIS particularly useful in mmWave communications. With effective RIS deployment, the mmWave RIS-aided network performance can be enhanced significantly. However, most existing works have analyzed RIS-aided network performance without exploiting the flexibility of RIS deployment and/or considering blockage effect, which leaves huge research gaps in RIS-aided networks. To fill the gaps, this thesis develops RIS-aided mmWave network models considering blockage effect under the stochastic geometry framework. Three scenarios, i.e., indoor, outdoor and outdoor-to-indoor (O2I) RIS-aided networks, are investigated.
Firstly, LoS propagation is hard to be guaranteed in indoor environments since blockages are densely distributed. Deploying RISs to assist mmWave transmission is a promising way to overcome this challenge. In the first paper, we propose an indoor mmWave RIS-aided network model capturing the characteristics of indoor environments. With a given base station (BS) density, whether deploying RISs or increasing BS density to further enhance the network coverage is more cost-effective is investigated. We present a coverage calculation algorithm which can be adapted for different indoor layouts. Then, we jointly analyze the network cost and coverage probability. Our results indicate that deploying RISs with an appropriate number of BSs is more cost-effective for achieving an adequate coverage probability than increasing BSs only.
Secondly, for a given total number of passive elements, whether fewer large-scale RISs or more small-scale RISs should be deployed has yet to be investigated in the presence of the blockage effect. In the second paper, we model and analyze a 3D outdoor mmWave RIS-aided network considering both building blockages and human-body blockages. Based on the proposed model, the analytical upper and lower bounds of the coverage probability are derived. Meanwhile, the closed-form coverage probability when RISs are much closer to the UE than the BS is derived. In terms of coverage enhancement, we reveal that sparsely deployed large-scale RISs outperform densely deployed small-scale RISs in scenarios of sparse blockages and/or long transmission distances, while densely deployed small-scale RISs win in scenarios of dense blockages and/or short transmission distances.
Finally, building envelope (the exterior wall of a building) makes outdoor mmWave BS difficult to communicate with indoor UE. Transmissive RISs with passive elements have been proposed to refract the signal when the transmitter and receiver are on the different side of the RIS. Similar to reflective RISs, the passive elements of a transmissive RIS can implement phase shifts and adjust the amplitude of the incident signals. By deploying transmissive RISs on the building envelope, it is feasible to implement RIS-aided O2I mmWave networks. In the third paper, we develop a 3D RIS-aided O2I mmWave network model with random indoor blockages. Based on the model, a closed-form coverage probability approximation considering blockage spatial correlation is derived, and multiple-RIS deployment strategies are discussed. For a given total number of RIS passive elements, the impact of blockage density, the number and locations of RISs on the coverage probability is analyzed.
All the analytical results have been validated by Monte Carlo simulation. The observations from the result analysis provide guidelines for the future deployment of RIS-aided mmWave networks
- …
