116,345 research outputs found

    Work Function of Single-wall Silicon Carbide Nanotube

    Full text link
    Using first-principles calculations, we study the work function of single wall silicon carbide nanotube (SiCNT). The work function is found to be highly dependent on the tube chirality and diameter. It increases with decreasing the tube diameter. The work function of zigzag SiCNT is always larger than that of armchair SiCNT. We reveal that the difference between the work function of zigzag and armchair SiCNT comes from their different intrinsic electronic structures, for which the singly degenerate energy band above the Fermi level of zigzag SiCNT is specifically responsible. Our finding offers potential usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure

    Entanglement and dynamical phase transition in a spin-orbit-coupled Bose-Einstein condensate

    Full text link
    Characterizing quantum phase transitions through quantum correlations has been deeply developed for a long time, while the connections between dynamical phase transitions (DPTs) and quantum entanglement is not yet well understood. In this work, we show that the time-averaged two-mode entanglement in the spin space reaches a maximal value when it undergoes a DPT induced by external perturbation in a spin-orbit-coupled Bose-Einstein condensate. We employ the von Neumann entropy and a correlation-based entanglement criterion as entanglement measures and find that both of them can infer the existence of DPT. While the von Neumann entropy works only for a pure state at zero temperature and requires state tomography to reconstruct, the experimentally more feasible correlation-based entanglement criterion acts as an excellent proxy for entropic entanglement and can determine the existence of entanglement for a mixed state at finite temperature, making itself an excellent indicator for DPT. Our work provides a deeper understanding about the connection between DPTs and quantum entanglement, and may allow the detection of DPT via entanglement become accessible as the examined criterion is suitable for measuring entanglement.Comment: 9 pages, 6 figure

    Research on 2×2 MIMO Channel with Truncated Laplacian Azimuth Power Spectrum

    Get PDF
    Multiple-input multiple-output (MIMO) Rayleigh fading channel with truncated Laplacian azimuth power spectrum (APS) is studied. By using the power correlation matrix of MIMO channel model and the modified Jakes simulator, into which with random phases are inserted, the effect of the azimuth spread (AS), angle of departure (AOD) and angle of arrival (AOA) on the spatial correlation coefficient and channel capacity are investigated. Numerical results show that larger AS generates smaller spatial correlation coefficient amplitude, while larger average AOD or AOA produces larger spatial correlation coefficient amplitude. The average capacity variation is comprehensively dominated by the average AOD, AOA and AS

    Electric vehicle market penetration and impacts on energy consumption and CO2 emission in the future: Beijing case

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.This study focuses on the development of electric vehicles (EV) in the private passenger vehicle fleet in Beijing (China), analyzes how EVs will penetrate in the market, and estimates the resulting impacts on energy consumption and CO2 emissions up to 2030. A discrete choice model is adopted with consideration of variables including vehicle technical characteristics, fuel prices, charging conditions and support policies. Results show that by 2030, without technological breakthrough and support policies, the market share of EV will be less than 7%, with gasoline dominating the energy structure. With fast technological progress, charging facility establishment, subsidies and tax breaks, EVs will account for 70% of annual new vehicle sales and nearly half of the vehicle stock by 2030, resulting in the substitution of nearly 1 million tons of gasoline with 3.2 billion kWh electricity in 2030 and the reduction of 0.6 million tons of CO2 emission in 2030. Technological progress, charging conditions and fuel prices are the top three drivers. Subsidies play an important role in the early stage, while tax and supply-side policies can be good options as long-term incentivesThis project was co-sponsored by the National Natural Science Foundation of China (71690240, 71690244, 71373142 and 71673165) and International Science & Technology Cooperation Program of China (2016YFE0102200). Lin Zhenhong of the US Oakridge National Lab is thanked for his great help in the modelling

    Existence problem of proton semi-bubble structure in the 21+2_1^+ state of 34^{34}Si

    Full text link
    The fully self-consistent Hartree-Fock (HF) plus random phase approximation (RPA) based on Skyrme-type interaction is used to study the existence problem of proton semi-bubble structure in the 21+2_1^+ state of 34^{34}Si. The experimental excitation energy and the B(E2) strength of the 21+2_1^+ state in 34^{34}Si can be reproduced quite well. The tensor effect is also studied. It is shown that the tensor interaction has a notable impact on the excitation energy of the 21+2_1^+ state and a small effect on the B(E2) value. Besides, its effect on the density distributions in the ground and 21+2_1^+ state of 34^{34}Si is negligible. Our present results with T36 and T44 show that the 21+2_1^+ state of 34^{34}Si is mainly caused by proton transiton from π1d5/2\pi 1d_{5/2} orbit to π2s1/2\pi 2s_{1/2} orbit, and the existence of a proton semi-bubble structure in this state is very unlikely.Comment: 6 pages, 3 figures, 3 table
    corecore