26,279 research outputs found

    Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm

    Get PDF
    © 2018 Xiao-Hong Liu et al. Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance

    A generalized Drucker–Prager viscoplastic yield surface model for asphalt concrete

    Get PDF
    A Generalized Drucker-Prager (GD-P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD-P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD-P model to characterize the full range of the internal friction angles from 0 to 90 degrees. In contrast, the existing Extended Drucker-Prager (ED-P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22 degrees. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD-P model. Results indicated that 1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and 2) the yield stresses predicted by the GD-P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED-P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD-P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.Financial support was provided by the U.S. Department of Transportation (USDOT) and the Texas state general revenue funds through Southwest Region University Transportation Center (SWUTC No. 600451-00006). The validation shear tests of this study are based upon the work supported by the National Science Foundation under Grant No. 0943140.This is the accepted manuscript version. The final version is available from Springer at http://dx.doi.org/10.1617/s11527-014-0425-1

    Minimal basilar membrane motion in low-frequency hearing

    Get PDF
    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201

    Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption

    Full text link
    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel prior to and during a solar eruption from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamic Observatory (SDO). It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK and then transforms toward a semi-circular shape during a slow rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope trigger the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure

    Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors

    Get PDF
    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Mining and analysis of audiology data to find significant factors associated with tinnitus masker

    Get PDF
    Objectives: The objective of this research is to find the factors associated with tinnitus masker from the literature, and by using the large amount of audiology data available from a large NHS (National Health Services, UK) hearing aid clinic. The factors evaluated were hearing impairment, age, gender, hearing aid type, mould and clinical comments. Design: The research includes literature survey for factors associated with tinnitus masker, and performs the analysis of audiology data using statistical and data mining techniques. Setting: This research uses a large audiology data but it also faced the problem of limited data for tinnitus. Participants: It uses 1,316 records for tinnitus and other diagnoses, and 10,437 records of clinical comments from a hearing aid clinic. Primary and secondary outcome measures: The research is looking for variables associated with tinnitus masker, and in future, these variables can be combined into a single model to develop a decision support system to predict about tinnitus masker for a patient. Results: The results demonstrated that tinnitus maskers are more likely to be fit to individuals with milder forms of hearing loss, and the factors age, gender, type of hearing aid and mould were all found significantly associated with tinnitus masker. In particular, those patients having Age<=55 years were more likely to wear a tinnitus masker, as well as those with milder forms of hearing loss. ITE (in the ear) hearing aids were also found associated with tinnitus masker. A feedback on the results of association of mould with tinnitus masker from a professional audiologist of a large NHS (National Health Services, UK) was also taken to better understand them. The results were obtained with different accuracy for different techniques. For example, the chi-squared test results were obtained with 95% accuracy, for Support and Confidence only those results were retained which had more than 1% Support and 80% Confidence. Conclusions: The variables audiograms, age, gender, hearing aid type and mould were found associated with the choice of tinnitus masker in the literature and by using statistical and data mining techniques. The further work in this research would lead to the development of a decision support system for tinnitus masker with an explanation that how that decision was obtained

    Ultrathin 2 nm gold as ideal impedance-matched absorber for infrared light

    Full text link
    Thermal detectors are a cornerstone of infrared (IR) and terahertz (THz) technology due to their broad spectral range. These detectors call for suitable broad spectral absorbers with minimalthermal mass. Often this is realized by plasmonic absorbers, which ensure a high absorptivity butonly for a narrow spectral band. Alternativly, a common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, it is possible to achieve a wavelength-independent absorptivity of up to 50 %, depending on the dielectric properties of the underlying substrate. However, existing absorber films typicallyrequire a thickness of the order of tens of nanometers, such as titanium nitride (14 nm), whichcan significantly deteriorate the response of a thermal transducers. Here, we present the application of ultrathin gold (2 nm) on top of a 1.2 nm copper oxide seed layer as an effective IR absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3) %, ranging from 2 μ\mum to 20 μ\mum, could be obtained and is further discussed. The presented gold thin-film represents analmost ideal impedance-matched IR absorber that allows a significant improvement of state-of-the-art thermal detector technology
    corecore