650 research outputs found

    Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization

    Get PDF
    This paper indicates that the filled function which appeared in one of the papers by Y. L. Shang et al. (2007) is also a tunneling function; that is, we prove that under some general assumptions this function has the characters of both tunneling function and filled function. A solution algorithm based on this T-F function is given and numerical tests from test functions show that our T-F function method is very effective in finding better minima

    Multi-Source Multi-View Clustering via Discrepancy Penalty

    Full text link
    With the advance of technology, entities can be observed in multiple views. Multiple views containing different types of features can be used for clustering. Although multi-view clustering has been successfully applied in many applications, the previous methods usually assume the complete instance mapping between different views. In many real-world applications, information can be gathered from multiple sources, while each source can contain multiple views, which are more cohesive for learning. The views under the same source are usually fully mapped, but they can be very heterogeneous. Moreover, the mappings between different sources are usually incomplete and partially observed, which makes it more difficult to integrate all the views across different sources. In this paper, we propose MMC (Multi-source Multi-view Clustering), which is a framework based on collective spectral clustering with a discrepancy penalty across sources, to tackle these challenges. MMC has several advantages compared with other existing methods. First, MMC can deal with incomplete mapping between sources. Second, it considers the disagreements between sources while treating views in the same source as a cohesive set. Third, MMC also tries to infer the instance similarities across sources to enhance the clustering performance. Extensive experiments conducted on real-world data demonstrate the effectiveness of the proposed approach

    The Analysis and Calculation Method of Urban Rail Transit Carrying Capacity Based on Express-Slow Mode

    Get PDF
    Urban railway transport that connects suburbs and city areas is characterized by uneven temporal and spatial distribution in terms of passenger flow and underutilized carrying capacity. This paper aims to develop methodologies to measure the carrying capacity of the urban railway by introducing a concept of the express-slow mode. We first explore factors influencing the carrying capacity under the express-slow mode and the interactive relationships among these factors. Then we establish seven different scenarios to measure the carrying capacity by considering the ratio of the number of the express trains and the slow trains, the station where overtaking takes place, and the number of overtaking maneuvers. Taking Shanghai Metro Line 16 as an empirical study, the proposed methods to measure the carrying capacity under different express-slow mode are proved to be valid. This paper contributes to the literature by remodifying the traditional methods to measure the carrying capacity when different express-slow modes are applied to improve the carrying capacity of the suburban railway

    Enhancing Generation through Summarization Duality and Explicit Outline Control

    Full text link
    Automatically open-ended long text generation poses significant challenges due to semantic incoherence and plot implausibility. Previous works usually alleviate this problem through outlines in the form of short phrases or abstractive signals by designing unsupervised tasks, which tend to be unstable and weakly interpretable. Assuming that a summary serves as a mature outline, we introduce a two-stage, summary-enhanced outline supervised generation framework. This framework leverages the dual characteristics of the summarization task to improve outline prediction, resulting in more explicit and plausible outlines. Furthermore, we identify an underutilization issue in outline-based generation with both standard pretrained language models (e.g., GPT-2, BART) and large language models (e.g., Vicuna, ChatGPT). To address this, we propose a novel explicit outline control method for more effective utilization of generated outlines.Comment: 14 page

    Tuning-Free Visual Customization via View Iterative Self-Attention Control

    Full text link
    Fine-Tuning Diffusion Models enable a wide range of personalized generation and editing applications on diverse visual modalities. While Low-Rank Adaptation (LoRA) accelerates the fine-tuning process, it still requires multiple reference images and time-consuming training, which constrains its scalability for large-scale and real-time applications. In this paper, we propose \textit{View Iterative Self-Attention Control (VisCtrl)} to tackle this challenge. Specifically, VisCtrl is a training-free method that injects the appearance and structure of a user-specified subject into another subject in the target image, unlike previous approaches that require fine-tuning the model. Initially, we obtain the initial noise for both the reference and target images through DDIM inversion. Then, during the denoising phase, features from the reference image are injected into the target image via the self-attention mechanism. Notably, by iteratively performing this feature injection process, we ensure that the reference image features are gradually integrated into the target image. This approach results in consistent and harmonious editing with only one reference image in a few denoising steps. Moreover, benefiting from our plug-and-play architecture design and the proposed Feature Gradual Sampling strategy for multi-view editing, our method can be easily extended to edit in complex visual domains. Extensive experiments show the efficacy of VisCtrl across a spectrum of tasks, including personalized editing of images, videos, and 3D scenes.Comment: Under revie

    Application of Machine Learning Optimization in Cloud Computing Resource Scheduling and Management

    Full text link
    In recent years, cloud computing has been widely used. Cloud computing refers to the centralized computing resources, users through the access to the centralized resources to complete the calculation, the cloud computing center will return the results of the program processing to the user. Cloud computing is not only for individual users, but also for enterprise users. By purchasing a cloud server, users do not have to buy a large number of computers, saving computing costs. According to a report by China Economic News Network, the scale of cloud computing in China has reached 209.1 billion yuan. At present, the more mature cloud service providers in China are Ali Cloud, Baidu Cloud, Huawei Cloud and so on. Therefore, this paper proposes an innovative approach to solve complex problems in cloud computing resource scheduling and management using machine learning optimization techniques. Through in-depth study of challenges such as low resource utilization and unbalanced load in the cloud environment, this study proposes a comprehensive solution, including optimization methods such as deep learning and genetic algorithm, to improve system performance and efficiency, and thus bring new breakthroughs and progress in the field of cloud computing resource management.Rational allocation of resources plays a crucial role in cloud computing. In the resource allocation of cloud computing, the cloud computing center has limited cloud resources, and users arrive in sequence. Each user requests the cloud computing center to use a certain number of cloud resources at a specific time

    HAFFormer: A Hierarchical Attention-Free Framework for Alzheimer's Disease Detection From Spontaneous Speech

    Full text link
    Automatically detecting Alzheimer's Disease (AD) from spontaneous speech plays an important role in its early diagnosis. Recent approaches highly rely on the Transformer architectures due to its efficiency in modelling long-range context dependencies. However, the quadratic increase in computational complexity associated with self-attention and the length of audio poses a challenge when deploying such models on edge devices. In this context, we construct a novel framework, namely Hierarchical Attention-Free Transformer (HAFFormer), to better deal with long speech for AD detection. Specifically, we employ an attention-free module of Multi-Scale Depthwise Convolution to replace the self-attention and thus avoid the expensive computation, and a GELU-based Gated Linear Unit to replace the feedforward layer, aiming to automatically filter out the redundant information. Moreover, we design a hierarchical structure to force it to learn a variety of information grains, from the frame level to the dialogue level. By conducting extensive experiments on the ADReSS-M dataset, the introduced HAFFormer can achieve competitive results (82.6% accuracy) with other recent work, but with significant computational complexity and model size reduction compared to the standard Transformer. This shows the efficiency of HAFFormer in dealing with long audio for AD detection
    corecore