11,249 research outputs found

    The effect of human mesenchymal stem cell on cigarette smoke-induced alterations of cardiac function and lipid metabolism in rat

    Get PDF
    Oral PresentationINTRODUCTION: Cigarette smoking is recognised as a major risk factor for cardiovascular diseases. Mesenchymal stem cells (MSC) were reported to attenuate cardiac injury of myocardial infarction. The aim of this study was to investigate the effect of bone marrow–derived MSCs (BM-MSC) and induced pluripotent stem …published_or_final_versio

    The use of a noninvasive and nondestructive method, microcomputed tomography, to evaluate the anti-osteoporotic activity of erxian decoction, a Chinese medicinal formula, in a rat model of menopausal osteoporosis

    Get PDF
    Aim of the study: The anti-osteoporotic activity of Erxian Decoction, a Chinese medicinal formula, in a rat model of menopausal osteoporosis was evaluated by microcomputed tomography (microCT). Materials and methods: Menopause causes a decline in both endocrine function and bone mineral density in human. In this study, 20-month-old female Sprague-Dawley-rats (SD-rats) with a low serum estradiol level and bone mineral density were employed. The anti-osteoporotic activity of EXD was assessed by the determination of trabecular material bone mineral density at the L2 mid-vertebral body after treatment. Serum estrogen levels were also determined to assess the effect of EXD on the endocrine status. Results: Results revealed a significant elevation in serum estradiol level and trabecular bone mineral density at the L2 mid-vertebral body in the EXD-treated menopausal rat model. Conclusions: The results obtained from the present investigation revealed that the EXD had anti-osteoporotic activity as evidenced by an increase of serum estradiol level and bone mineral density. ©2009 IEEE.published_or_final_versionProceedings of the 2009 2nd International Conference On Biomedical Engineering And Informatics (BMEI 2009), Tianjin, China, 17-19 October 2009, v. 1 p. 47-49, article number 530482

    Research of influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet

    Get PDF
    OBJECTIVE: To investigate the influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet. METHODS: Twenty-four male Wistar rats were randomly divided into 3 groups of 8: normal, model and intervention. The model group and intervention group were fed with high fat diet, while the normal group received basal feed. From day 1, the intervention group was randomly given interventions such as swimming exercise and dietary restriction. The interventions duration were 28 days. At the end of the experiment, the levels of rats’ body weight and liver weight were detected, the serum levels of total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and hepatic triglyceride content (TG) were detected by using biochemical assay, serum level of gastrin (GAS), motilin (MTL) were assayed by the enzyme linked immunosorbent assay (ELISA). RESULTS: Compared with the level of body weight and liver weight in the normal rats, body weight and liver weight in the rat of the model group were significantly increase (P<0.05 or P<0.01). Plasma concentrations of TC, LDL-C and hepatic TG in the model group were significantly increased compared with those in the normal group (P<0.05 or P<0.01). The contents of GAS, MTL, HDL-C in the model rats’plasma were significantly reduced compared with those of the normal group (P<0.05 or P<0.01). Compared with those in the model group, rats’ body weight, liver weight, serum TC, LDL-C, and TG content of liver in the intervention group decreased significantly (P<0.05 or P<0.01). Meanwhile, serum content of GAS, MTL, HDL-C were significantly improved in the intervention rats compared to the model group. CONCLUSION: The action of combining exercise with diet control for lipid metabolism disorder might be related to regulation of GAS, MTL and other gastrointestinal hormones

    On the elliptical flow in asymmetric collisions and nuclear equation of state

    Full text link
    We here present the results of elliptical flow for the collision of different asymmetric nuclei (10Ne20 +13 Al27, 18Ar40 +21 Sc45, 30Zn64 +28 Ni58, 36Kr86 +41 Nb93) by using the Quantum Molecular Dynamics (QMD) model. General features of elliptical flow are investigated with the help of theoretical simulations. The simulations are performed at different beam energies between 40 and 105 MeV/nucleon. A significant change can be seen from in-plane to out-of-plane elliptical flow of different fragments with incident energy. A comparison with experimental data is also made. Further, we predict, for the first time that, elliptical flow for different kind of fragments follow power law dependence ? C(Atot)? for asymmetric systems

    Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential.

    Get PDF
    Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines.published_or_final_versio

    SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

    Full text link
    In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China

    Get PDF
    Biological soil crusts (BSC), most notably lichen crusts, develop and diversify in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China. Four different successional stages of BSC, including bare sand, microalgal crusts, lichen crusts, and moss crusts, were selected to determine successional changes in microalgal species composition and biomass and formation of BSC. A 10 x 10-m observation plot was established in an interdune region of the Gurbantunggut Desert and data were collected over an 8-year study period. The main results were: (1) different successional stages of BSC significantly affected the content of soil organic C and total and available N but not the total and available P and K content of soil; (2) composition of microalgal communities differed among the four successional stages; (3) significant differences in microalgal biomass were observed among the four successional stages; (4) bare sand was mainly uncompacted sand gains; (5) filamentous cyanobacteria, particularly Microcoleus vaginatus, were the dominant species in the early phase of crust succession. The presence of fungal mycelium and moss rhizoids prevented water and wind erosion
    corecore