21,001 research outputs found

    Binomial Difference Ideal and Toric Difference Variety

    Full text link
    In this paper, the concepts of binomial difference ideals and toric difference varieties are defined and their properties are proved. Two canonical representations for Laurent binomial difference ideals are given using the reduced Groebner basis of Z[x]-lattices and regular and coherent difference ascending chains, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, perfect, and toric are given in terms of their support lattices which are Z[x]-lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Four equivalent definitions for toric difference varieties are presented. Finally, algorithms are given to check whether a given Laurent binomial difference ideal I is reflexive, prime, well-mixed, perfect, or toric, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals.Comment: 72 page

    Solutions to the complex Korteweg-de Vries equation: Blow-up solutions and non-singular solutions

    Full text link
    In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, including blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Korteweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the complex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.Comment: 12 figure
    corecore