230,637 research outputs found

    On the hydrostatic approximation of the Navier-Stokes equations in a thin strip

    Full text link
    In this paper, we first prove the global well-posedness of a scaled anisotropic Navier-Stokes system and the hydrostatic Navier-Stokes system in a 2-D striped domain with small analytic data in the tangential variable. Then we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes system with analytic data

    Electromagnetic energy storage and power dissipation in nanostructures

    Full text link
    The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications

    Resonant Tunneling through S- and U-shaped Graphene Nanoribbons

    Full text link
    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks are found eminating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure

    Unitarity and Complete Reducibility of Certain Modules over Quantized Affine Lie Algebras

    Full text link
    Let Uq(G^)U_q(\hat{\cal G}) denote the quantized affine Lie algebra and Uq(G(1))U_q({\cal G}^{(1)}) the quantized {\em nontwisted} affine Lie algebra. Let Ofin{\cal O}_{\rm fin} be the category defined in section 3. We show that when the deformation parameter qq is not a root of unit all integrable representations of Uq(G^)U_q(\hat{\cal G}) in the category Ofin{\cal O}_{\rm fin} are completely reducible and that every integrable irreducible highest weight module over Uq(G(1))U_q({\cal G}^{(1)}) corresponding to q>0q>0 is equivalent to a unitary module.Comment: 17 pages (minor errors corrected

    Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Get PDF
    In this paper, we extend Parikh' work to the non-stationary black hole. As an example of the non-stationary black hole, we study the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. We find that the result is different from Parikh's work because drHdv\frac{dr_{H}}{dv} is the function of Bondi mass m(v)

    Impacts of stratospheric aerosol geoengineering strategy on Caribbean coral reefs

    Get PDF
    Purpose: Currently, negotiation on global carbon emissions reduction is very difficult due to lack of international willingness. In response, geoengineering (climate engineering) strategy is proposed to artificially cool the planet. Meanwhile, as the harbor around one-third of all described marine species, coral reefs are the most sensitive ecosystem on the planet to climate change. However, until now, there is no any quantitative assessment on impacts of geoengineering on coral reefs. In this study, we model impacts of stratospheric aerosol geoengineering on coral reefs. Design/methodology/approach: We will use the HadGEM2-ES climate model to model and evaluate impacts of stratospheric aerosol geoengineering on coral reefs. Findings: This study shows that a) stratospheric aerosol geoengineering could significantly mitigate future coral bleaching throughout the Caribbean Sea; b) Changes in downward solar irradiation, sea level rise and sea surface temperature caused by geoengineering implementation should have very little impacts on coral reefs; c) although geoengineering would prolong the return period of future hurricanes, this may still be too short to ensure coral recruitment and survival after hurricane damage

    Evolving small-world networks with geographical attachment preference

    Full text link
    We introduce a minimal extended evolving model for small-world networks which is controlled by a parameter. In this model the network growth is determined by the attachment of new nodes to already existing nodes that are geographically close. We analyze several topological properties for our model both analytically and by numerical simulations. The resulting network shows some important characteristics of real-life networks such as the small-world effect and a high clustering.Comment: 11 pages, 4 figure

    On the possibility of measuring FL(x,Q2)F_L(x,Q^2) at HERA using radiative events

    Get PDF
    It is shown that a significant measurement of the longitudinal structure function FL(x,Q2)F_L(x,Q^2) can be performed at HERA, for Q2=2GeV2Q^2 = 2 GeV^2 and Q2=5GeV2Q^2 = 5 GeV^2 and for x around 10410^{-4}, using radiative events with hard photon emission collinear to the incident lepton beam, under the present running conditions and with an integrated luminosity of 10 pb1pb^{-1}. The influence of experimental conditions is discussed.Comment: 12 pages (6 figures

    Updated Estimate of the Muon Magnetic Moment Using Revised Results from e+e- Annihilation

    Full text link
    A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e+e- annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e+e- and tau spectral functions in the pi pi channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and 1.0 GeV, so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are a_mu[had,LO] = (696.3 +- 6.2[exp] +- 3.6[rad])e-10 (e+e- -based) and a_mu[had,LO] = (711.0 +- 5.0[exp] +- 0.8[rad] +- 2.8[SU2])e-10 (tau-based), where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read a_mu = (11,659,180.9 +- 7.2[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (e+e- -based) and a_mu = (11,659,195.6 +- 5.8[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (tau-based), where the errors account for the hadronic, light-by-light (LBL) scattering and electroweak contributions. The deviations from the measurement at BNL are found to be (22.1 +- 7.2 +- 3.5 +- 8.0)e-10 (1.9 sigma) and (7.4 +- 5.8 +- 3.5 +- 8.0)e-10 (0.7 sigma) for the e+e- and tau-based estimates, respectively, where the second error is from the LBL contribution and the third one from the BNL measurement.Comment: 14 pages, 7 figures (to be submitted to Phys Lett B
    corecore