13,207 research outputs found
Optical Activity Enhanced by Strong Inter-molecular Coupling in Planar Chiral Metamaterials
The polarization of light can be rotated in materials with an absence of molecular or structural mirror symmetry. While this rotating ability is normally rather weak in naturally occurring chiral materials, artificial chiral metamaterials have demonstrated extraordinary rotational ability by engineering intra-molecular couplings. However, while in general, chiral metamaterials can exhibit strong rotatory power at or around resonances, they convert linearly polarized waves into elliptically polarized ones. Here, we demonstrate that strong inter-molecular coupling through a small gap between adjacent chiral metamolecules can lead to a broadband enhanced rotating ability with pure rotation of linearly polarized electromagnetic waves. Strong inter-molecular coupling leads to nearly identical behaviour in magnitude, but engenders substantial difference in phase between transmitted left and right-handed waves
Pseudo-Killing Spinors, Pseudo-supersymmetric p-branes, Bubbling and Less-bubbling AdS Spaces
We consider Einstein gravity coupled to an n-form field strength in D
dimensions. Such a theory cannot be supersymmetrized in general, we
nevertheless propose a pseudo-Killing spinor equation and show that the AdS X
Sphere vacua have the maximum number of pseudo-Killing spinors, and hence are
fully pseudo-supersymmetric. We show that extremal p-branes and their
intersecting configurations preserve fractions of the pseudo-supersymmetry. We
study the integrability condition for general (D,n) and obtain the additional
constraints that are required so that the existence of the pseudo-Killing
spinors implies the Einstein equations of motion. We obtain new
pseudo-supersymmetric bubbling AdS_5 X S^5 spaces that are supported by a
non-self-dual 5-form. This demonstrates that non-supersymmegtric conformal
field theories may also have bubbling states of arbitrary droplets of free
fermions in the phase space. We also obtain an example of less-bubbling AdS
geometry in D=8, whose bubbling effects are severely restricted by the
additional constraint arising from the integrability condition.Comment: typos corrected, extra comments and references added, version
appeared in JHE
In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse
Eclipses of the single-line spectroscopic binary star, epsilon Aurigae,
provide an opportunity to study the poorly-defined companion. We used the MIRC
beam combiner on the CHARA array to create interferometric images during
eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk
that is opaque and tilted, and therefore exclude alternative models for the
system. These data constrain the geometry and masses of the components,
providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Scattering of Giant Holes
We study scalar excitations of high spin operators in N=4 super Yang-Mills
theory, which are dual to solitons propagating on a long folded string in AdS_3
x S^1. In the spin chain description of the gauge theory, these are associated
to holes in the magnon distribution in the sl(2,R) sector. We compute the
all-loop hole S-matrix from the asymptotic Bethe ansatz, and expand in leading
orders at weak and strong coupling. The worldsheet S-matrix of solitonic
excitations on the GKP string is calculated using semiclassical quantization.
We find an exact agreement between the gauge theory and string theory results.Comment: 13 pages. v2: minor corrections, references adde
Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)
The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT).
Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard.
In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT.
The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results
Flow of red blood cells suspensions through hyperbolic microcontractions
The present study uses a hyperbolic microchannel with a low aspect ratio (AR) to investigate how the red blood cells (RBCs) deform under conditions of both extensional and shear induced flows. The deformability is presented by the degree of the deformation index (DI) of the flowing RBCs throughout the microchannel at its centerline. A suitable image analysis technique is used for semi-automatic measurements of average DIs, velocity and strain rate of the RBCs travelling in the regions of interest. The results reveal a strong deformation of RBCs under both extensional and shear stress dominated flow conditions
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
- …
