3,653 research outputs found
Invisibility Cloak Printed on a Photonic Chip
Invisibility cloak capable of hiding an object can be achieved by properly
manipulating electromagnetic field. Such a remarkable ability has been shown in
transformation and ray optics. Alternatively, it may be realistic to create a
spatial cloak by means of confining electromagnetic field in three-dimensional
arrayed waveguides and introducing appropriate collective curvature surrounding
an object. We realize the artificial structure in borosilicate by femtosecond
laser direct writing, where we prototype up to 5000 waveguides to conceal
millimeter-scale volume. We characterize the performance of the cloak by
normalized cross correlation, tomography analysis and continuous
three-dimensional viewing angle scan. Our results show invisibility cloak can
be achieved in waveguide optics. Furthermore, directly printed invisibility
cloak on a photonic chip may enable controllable study and novel applications
in classical and quantum integrated photonics, such as invisualising a coupling
or swapping operation with on-chip circuits of their own.Comment: 9 pages, 6 figure
Tooth-shaped plasmonic waveguide filters with nanometeric sizes
A novel nanometeric plasmonic filter in a tooth-shaped Metal-Insulator-Metal
waveguide is proposed and demonstrated numerically. An analytic model based on
the scattering matrix method is given. The result reveals that the single
tooth-shaped filter has a wavelength filtering characteristic and an
ultra-compact size in the length of a few hundred nanometers, compared to
grating-like SPPs filters. Both analytic and simulation results show that the
wavelength of the trough of the transmission has linear and nonlinear
relationships with the tooth depth and the tooth width, respectively. The
waveguide filter could be utilized to develop ultra-compact photonic filters
for high integration.Comment: 16 pages, 5 figure
Diagnostic value of two dimensional shear wave elastography combined with texture analysis in early liver fibrosis.
BACKGROUND: Staging diagnosis of liver fibrosis is a prerequisite for timely diagnosis and therapy in patients with chronic hepatitis B. In recent years, ultrasound elastography has become an important method for clinical noninvasive assessment of liver fibrosis stage, but its diagnostic value for early liver fibrosis still needs to be further improved. In this study, the texture analysis was carried out on the basis of two dimensional shear wave elastography (2D-SWE), and the feasibility of 2D-SWE plus texture analysis in the diagnosis of early liver fibrosis was discussed.
AIM: To assess the diagnostic value of 2D-SWE combined with textural analysis in liver fibrosis staging.
METHODS: This study recruited 46 patients with chronic hepatitis B. Patients underwent 2D-SWE and texture analysis; Young\u27s modulus values and textural patterns were obtained, respectively. Textural pattern was analyzed with regard to contrast, correlation, angular second moment (ASM), and homogeneity. Pathological results of biopsy specimens were the gold standard; comparison and assessment of the diagnosis efficiency were conducted for 2D-SWE, texture analysis and their combination.
RESULTS: 2D-SWE displayed diagnosis efficiency in early fibrosis, significant fibrosis, severe fibrosis, and early cirrhosis (AUC \u3e 0.7, P \u3c 0.05) with respective AUC values of 0.823 (0.678-0.921), 0.808 (0.662-0.911), 0.920 (0.798-0.980), and 0.855 (0.716-0.943). Contrast and homogeneity displayed independent diagnosis efficiency in liver fibrosis stage (AUC \u3e 0.7, P \u3c 0.05), whereas correlation and ASM showed limited values. AUC of contrast and homogeneity were respectively 0.906 (0.779-0.973), 0.835 (0.693-0.930), 0.807 (0.660-0.910) and 0.925 (0.805-0.983), 0.789 (0.639-0.897), 0.736 (0.582-0.858), 0.705 (0.549-0.883) and 0.798 (0.650-0.904) in four liver fibrosis stages, which exhibited equivalence to 2D-SWE in diagnostic efficiency (P \u3e 0.05). Combined diagnosis (PRE) displayed diagnostic efficiency (AUC \u3e 0.7, P \u3c 0.01) for all fibrosis stages with respective AUC of 0.952 (0.841-0.994), 0.896 (0.766-0.967), 0.978 (0.881-0.999), 0.947 (0.835-0.992). The combined diagnosis showed higher diagnosis efficiency over 2D-SWE in early liver fibrosis (P \u3c 0.05), whereas no significant differences were observed in other comparisons (P \u3e 0.05).
CONCLUSION: Texture analysis was capable of diagnosing liver fibrosis stage, combined diagnosis had obvious advantages in early liver fibrosis, liver fibrosis stage might be related to the hepatic tissue hardness distribution
Diethylene glycol poisoning and liver function following accidental diethylene glycol injection
The aim of the present study was to investigate the hepatotoxic effects of accidental intravenous diethylene glycol (DEG) poisoning in patients with liver disease. Clinical manifestations were recorded and liver function tests were carried out for 64 patients with liver disease who had been accidentally treated intravenously with DEG. Comparisons
were made between the poisoned and non-poisoned groups. Of the 64 cases with preexisting liver disease, 15 cases (23.4 %) developed toxic presentations after exposure to DEG. All cases were men. Twelve of the 15 poisoned patients (80 %)died within seven days. The intravenous administration of DEG resulted in only mild liver function impairment. Gender (p = 0.039) and the severity of jaundice prior to DEG administration were risk factors related to the occurrence of toxin-induced renal failure (p < 0.006). The results suggest that DEG may worsen liver damage in patients with preexisting liver disease. However, our study demonstrated only mild, transient alterations in patients’ baseline
liver functions. Severe liver damage secondary to DEG was only occasionally seen in patients with concomitant renal failure
Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis
Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35–55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS
Phase I Trial of Escalating-dose Cisplatin with 5-fluorouracil and Concurrent Radiotherapy in Chinese Patients with Esophageal Cancer
We defined the maximum-tolerated dose (MTD) of chemoradiotherapy (cisplatin (CDDP) with 5-fluorouracil
(5-FU) and concurrent chemoradiotherapy) for Chinese patients with esophageal cancer. Twenty-one previously untreated patients with primary esophageal cancer were entered into this study. Escalating doses of CDDP with 5-FU were administered in a modified Fibonacci sequence, with
concurrent conventional fractionation radiotherapy (CFR) of 60 Gy or 50 Gy. The starting doses were CDDP 37.5 mg/m2 on day 1, and 5-FU 500 mg/m2 on days 1-5, respectively. The regimen was repeated 4 times every 28 days. If no dose-limiting toxicity (DLT) was observed, the next dose level
was applied. The procedures were repeated until DLT appeared. The MTD was declared to be 1 dose level below the level at which DLT appeared. DLT was grade 3 radiation-induced esophagitis at a dose level of CDDP 60 mg/m2 with 5-FU 700 mg/m2 and concurrent 60 Gy CFR. MTD was defined as CDDP 52.5 mg/m2 with 5-FU 700 mg/m2 and concurrent 50 Gy CFR. The MTD of CDDP with 5-FU and in concurrent chemoradiotherapy for Chinese patients with esophageal cancer is CDDP 52.5 mg/m2 on day 1 and 5FU 700 mg/m2 on days 1-5, repeated 4 times every 28 days, and concurrent 50 Gy CFR. Further evaluation of this regimen in a prospective phase II trial is ongoing.</p
Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells
We study the hybrid exciton-polaritons in a bad microcavity containing the
organic and inorganic quantum wells. The corresponding polariton states are
given. The analytical solution and the numerical result of the stationary
spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic
Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction
Reconnection of the self-generated magnetic fields in laser-plasma
interaction was first investigated experimentally by Nilson {\it et al.} [Phys.
Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a
solid target layer. An elongated current sheet (CS) was observed in the plasma
between the two laser spots. In order to more closely model magnetotail
reconnection, here two side-by-side thin target layers, instead of a single
one, are used. It is found that at one end of the elongated CS a fan-like
electron outflow region including three well-collimated electron jets appears.
The ( MeV) tail of the jet energy distribution exhibits a power-law
scaling. The enhanced electron acceleration is attributed to the intense
inductive electric field in the narrow electron dominated reconnection region,
as well as additional acceleration as they are trapped inside the rapidly
moving plasmoid formed in and ejected from the CS. The ejection also induces a
secondary CS
- …
