78,045 research outputs found

    A Density Functional Theory based study of Electron Transport Through Ferrocene Compounds with Different Anchor Groups in Different Adsorption Configurations of A STM-setup

    Full text link
    In our theoretical study where we combine a nonequilibrium Green's function (NEGF) approach with density functional theory (DFT) we investigate compounds containing a ferrocene moiety which is connected to i) thiol anchor groups on both sides in a para-connection, ii) a pyridyl anchor group on one side in a meta-connection and a thiol group on the other side in a para-connection, in both cases with acetylenic spacers in between the Ferrocene and the anchors. We predict possible single molecule junction geometries within a scanning tunneling microscopy (STM) setup where we find that the conductance trend for the set of conformations are intriguing in the sense that the conductance does not decrease while the junction length increases which we analyze and explain in terms of Fermi level alignment. We also find a pattern for the current-voltage (IV) curves within the linear-response regime for both molecules we study, where the conductance variation with the molecular configurations is surprisingly small

    Coupling of pion condensate, chiral condensate and Polyakov loop in an extended NJL model

    Full text link
    The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting (T,μI)(T,\mu_I) phase diagram is studied with emphasis on the critical point and Polyakov loop dynamics. The tricritical point for the pion superfluidity phase transition is confirmed and the phase transition for isospin symmetry restoration in high isospin chemical potential region perfectly coincides with the crossover phase transition for Polyakov loop. These results are in agreement with the Lattice QCD data.Comment: 15pages, 8 figure

    A nonparametric empirical Bayes approach to covariance matrix estimation

    Full text link
    We propose an empirical Bayes method to estimate high-dimensional covariance matrices. Our procedure centers on vectorizing the covariance matrix and treating matrix estimation as a vector estimation problem. Drawing from the compound decision theory literature, we introduce a new class of decision rules that generalizes several existing procedures. We then use a nonparametric empirical Bayes g-modeling approach to estimate the oracle optimal rule in that class. This allows us to let the data itself determine how best to shrink the estimator, rather than shrinking in a pre-determined direction such as toward a diagonal matrix. Simulation results and a gene expression network analysis shows that our approach can outperform a number of state-of-the-art proposals in a wide range of settings, sometimes substantially.Comment: 20 pages, 4 figure

    Time evolving fluid from Vaidya spacetime

    Full text link
    A time evolving fluid system is constructed on a timelike boundary hypersurface at finite cutoff in Vaidya spacetime. The approach used to construct the fluid equations is a direct extension of the ordinary Gravity/Fluid correspondence under the constrained fluctuation obeying Petrov type I conditions. The explicit relationships between the time dependent fluctuation modes and the fluid quantities such as density, velocity field and kinematic viscosity parameters are established, and the resulting fluid system is governed by a system of a sourced continuity equation and a compressible Navier-Stokes equation with non-trivial time evolution.Comment: 14 page
    corecore