1,356 research outputs found
Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
The iron pnictide and chalcogenide compounds are a subject of intensive
investigations due to their high temperature superconductivity.\cite{a-LaFeAsO}
They all share the same structure, but there is significant variation in their
physical properties, such as magnetic ordered moments, effective masses,
superconducting gaps and T. Many theoretical techniques have been applied
to individual compounds but no consistent description of the trends is
available \cite{np-review}. We carry out a comparative theoretical study of a
large number of iron-based compounds in both their magnetic and paramagnetic
states. We show that the nature of both states is well described by our method
and the trends in all the calculated physical properties such as the ordered
moments, effective masses and Fermi surfaces are in good agreement with
experiments across the compounds. The variation of these properties can be
traced to variations in the key structural parameters, rather than changes in
the screening of the Coulomb interactions. Our results provide a natural
explanation of the strongly Fermi surface dependent superconducting gaps
observed in experiments\cite{Ding}. We propose a specific optimization of the
crystal structure to look for higher T superconductors.Comment: 5 pages, 3 figures with a 5-page supplementary materia
Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity
We use neutron scattering to study the structural and magnetic phase
transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a
semimetal to a high-transition-temperature (high-Tc) superconductor through
Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural
lattice distortion followed by a stripe like commensurate antiferromagnetic
order with decreasing temperature. With increasing Fluorine doping, the
structural phase transition decreases gradually while the antiferromagnetic
order is suppressed before the appearance of superconductivity, resulting an
electronic phase diagram remarkably similar to that of the high-Tc copper
oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other
Fe-based superconductors reveals that the effective electronic band width
decreases systematically for materials with higher Tc. The results suggest that
electron correlation effects are important for the mechanism of high-Tc
superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi
Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have
received a lot of attention because they exhibit a large thermopower, as well
as striking similarities to heavy fermion Kondo insulators. Many proposals have
been advanced, however, lacking quantitative methodologies applied to this
problem, a consensus remained elusive to date. Here, we employ realistic
many-body calculations to elucidate the impact of electronic correlation
effects on FeSi. Our methodology accounts for all substantial anomalies
observed in FeSi: the metallization, the lack of conservation of spectral
weight in optical spectroscopy, and the Curie susceptibility. In particular we
find a very good agreement for the anomalous thermoelectric power. Validated by
this congruence with experiment, we further discuss a new physical picture of
the microscopic nature of the insulator-to-metal crossover. Indeed, we find the
suppression of the Seebeck coefficient to be driven by correlation induced
incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic
homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will
exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for
thermoelectric applications: theory and experiment
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Consistent model of magnetism in ferropnictides
The discovery of superconductivity in LaFeAsO introduced the ferropnictides
as a major new class of superconducting compounds with critical temperatures
second only to cuprates. The presence of magnetic iron makes ferropnictides
radically different from cuprates. Antiferromagnetism of the parent compounds
strongly suggests that superconductivity and magnetism are closely related.
However, the character of magnetic interactions and spin fluctuations in
ferropnictides, in spite of vigorous efforts, has until now resisted
understanding within any conventional model of magnetism. Here we show that the
most puzzling features can be naturally reconciled within a rather simple
effective spin model with biquadratic interactions, which is consistent with
electronic structure calculations. By going beyond the Heisenberg model, this
description explains numerous experimentally observed properties, including the
peculiarities of the spin wave spectrum, thin domain walls, crossover from
first to second order phase transition under doping in some compounds, and
offers new insight in the occurrence of the nematic phase above the
antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV
We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
Measurement of the matrix element for the decay η′→ηπ +π -
The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio
- …
