1,529 research outputs found
Security proof of differential phase shift quantum key distribution in the noiseless case
Differential phase shift quantum key distribution systems have a high
potential for achieving high speed key generation. However, its unconditional
security proof is still missing, even though it has been proposed for many
years. Here, we prove its security against collective attacks with a weak
coherent light source in the noiseless case (i.e. no bit error). The only
assumptions are that quantum theory is correct, the devices are perfect and
trusted and the key size is infinite. Our proof works on threshold detectors.
We compute the lower bound of the secret key generation rate using the
information-theoretical security proof method. Our final result shows that the
lower bound of the secret key generation rate per pulse is linearly
proportional to the channel transmission probability if Bob's detection counts
obey the binomial distribution.Comment: Published version, 13 pages, 4 figures, minor changes, references
added, acknowledgement adde
Collective quantum phase slips in multiple nanowire junctions
Realization of robust coherent quantum phase slips represents a significant
experimental challenge. Here we propose a new design consisting of multiple
nanowire junctions to realize a phase-slip flux qubit. It admits good
tunability provided by gate voltages applied on superconducting islands
separating nanowire junctions. In addition, the gates and junctions can be
identical or distinct to each other leading to symmetric and asymmetric setups.
We find that the asymmetry can improve the performance of the proposed device,
compared with the symmetric case. In particular, it can enhance the effective
rate of collective quantum phase slips. Furthermore, we demonstrate how to
couple two such devices via a mutual inductance. This is potentially useful for
quantum gate operations. Our investigation on how symmetry in multiple nanowire
junctions affects the device performance should be useful for the application
of phase-slip flux qubits in quantum information processing and quantum
metrology.Comment: 12 pages, 6 figure
Pre-classification module for an all-season image retrieval system
Author name used in this publication: Zheru ChiAuthor name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator
A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications. A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications
An Algorithm for Preferential Selection of Spectroscopic Targets in LEGUE
We describe a general target selection algorithm that is applicable to any
survey in which the number of available candidates is much larger than the
number of objects to be observed. This routine aims to achieve a balance
between a smoothly-varying, well-understood selection function and the desire
to preferentially select certain types of targets. Some target-selection
examples are shown that illustrate different possibilities of emphasis
functions. Although it is generally applicable, the algorithm was developed
specifically for the LAMOST Experiment for Galactic Understanding and
Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou
Jing Telescope. In particular, this algorithm was designed for the portion of
LEGUE targeting the Galactic halo, in which we attempt to balance a variety of
science goals that require stars at fainter magnitudes than can be completely
sampled by LAMOST. This algorithm has been implemented for the halo portion of
the LAMOST pilot survey, which began in October 2011.Comment: 17 pages, 7 figures, accepted for publication in RA
Preventing Unauthorized AI Over-Analysis by Medical Image Adversarial Watermarking
The advancement of deep learning has facilitated the integration of
Artificial Intelligence (AI) into clinical practices, particularly in
computer-aided diagnosis. Given the pivotal role of medical images in various
diagnostic procedures, it becomes imperative to ensure the responsible and
secure utilization of AI techniques. However, the unauthorized utilization of
AI for image analysis raises significant concerns regarding patient privacy and
potential infringement on the proprietary rights of data custodians.
Consequently, the development of pragmatic and cost-effective strategies that
safeguard patient privacy and uphold medical image copyrights emerges as a
critical necessity. In direct response to this pressing demand, we present a
pioneering solution named Medical Image Adversarial watermarking (MIAD-MARK).
Our approach introduces watermarks that strategically mislead unauthorized AI
diagnostic models, inducing erroneous predictions without compromising the
integrity of the visual content. Importantly, our method integrates an
authorization protocol tailored for legitimate users, enabling the removal of
the MIAD-MARK through encryption-generated keys. Through extensive experiments,
we validate the efficacy of MIAD-MARK across three prominent medical image
datasets. The empirical outcomes demonstrate the substantial impact of our
approach, notably reducing the accuracy of standard AI diagnostic models to a
mere 8.57% under white box conditions and 45.83% in the more challenging black
box scenario. Additionally, our solution effectively mitigates unauthorized
exploitation of medical images even in the presence of sophisticated watermark
removal networks. Notably, those AI diagnosis networks exhibit a meager average
accuracy of 38.59% when applied to images protected by MIAD-MARK, underscoring
the robustness of our safeguarding mechanism
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the Cross Section for e+e- -> hadrons at Center-of-Mass Energies from 2 to 5 GeV
We report values of for 85 center-of-mass energies between
2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing
Electron-Positron Collider.Comment: 5 pages, 3 figure
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
- …
