6,347 research outputs found
Weak Decays of Doubly Heavy Baryons: the case
Very recently, the LHCb collaboration has observed in the final state
a resonant structure that is identified as the
doubly-charmed baryon . Inspired by this observation, we
investigate the weak decays of doubly heavy baryons ,
, , ,
, , ,
and and focus on the decays into spin
baryons in this paper. At the quark level these decay processes are induced by
the or transitions, and the two spectator quarks can be
viewed as a scalar or axial vector diquark. We first derive the hadronic form
factors for these transitions in the light-front approach and then apply them
to predict the partial widths for the semi-leptonic and non-leptonic decays of
doubly heavy baryons. We find that a number of decay channels are sizable and
can be examined in future measurements at experimental facilities like LHC,
Belle II and CEPC.Comment: 40 pages, 4 figures, to appear in EPJ
Multipartite entanglement purification with quantum nondemolition detectors
We present a scheme for multipartite entanglement purification of quantum
systems in a Greenberger-Horne-Zeilinger state with quantum nondemolition
detectors (QNDs). This scheme does not require the controlled-not gates which
cannot be implemented perfectly with linear optical elements at present, but
QNDs based on cross-Kerr nonlinearities. It works with two steps, i.e., the
bit-flipping error correction and the phase-flipping error correction. These
two steps can be iterated perfectly with parity checks and simple single-photon
measurements. This scheme does not require the parties to possess sophisticated
single photon detectors. These features maybe make this scheme more efficient
and feasible than others in practical applications.Comment: 8 pages, 5 figure
Recommended from our members
Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China
Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower (p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant (p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments. © 2004 Elsevier Ltd. All rights reserved
Edge states in self-complementary checkerboard photonic crystals: Zak phase, surface impedance and experimental verification
Edge states of photonic crystals have attracted much attention for the
potential applications such as high transmission waveguide bends, spin
dependent splitters and one-way photonic circuits. Here, we theoretically
discuss and experimentally observe the deterministic edge states in
checkerboard photonic crystals. Due to the self-complementarity of checkerboard
photonic crystals, a common band gap is structurally protected between two
photonic crystals with different unit cells. Deterministic edge states are
found inside the common band gap by exploiting the Zak phase analysis and
surface impedance calculation. These edge states are also confirmed by a
microwave experiment.Comment: 13 pages, 4 figure
Magmatic record of India-Asia collision
This work was financially co-supported by Chinese Academy of Sciences (XDB03010301) and other Chinese funding agencies (Project 973: 2011CB403102 and 2015CB452604; NSFC projects: 41225006, 41273044, and 41472061).New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80-40 Ma migrated from south to north and then back to south with significant mantle input at 70-43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52-51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.Peer reviewe
- …
