29 research outputs found
Analysis of High Temperature Oxidation Process and Mechanism of Heterogeneous Titanium Alloy
This study explores the differences in oxidation color, oxidation products, and high-temperature oxidation resistance between TA1 and Ti-6Al-4V (TC4) titanium alloys following a 50 h oxidation treatment at 450 °C and 750 °C. A combination of analytical techniques—optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and micro-Vickers hardness testing—was employed to characterize the morphology of the oxide layers, elemental distribution, phase composition, and microhardness variations. The results reveal that at 450 °C, both alloys develop relatively compact oxide films. TA1 exhibits a yellow–gray coloration, while TC4 displays a characteristic blue–violet interwoven color. At 750 °C, however, the oxide layers become porous and prone to spallation, with a brown appearance and predominance of TiO2. XPS analysis confirms that Ti4+ (TiO2) is the dominant oxidation state on both alloy surfaces at 750 °C, with TC4 showing a significantly higher content of Al2O3. Microhardness measurements indicate that high-temperature oxidation increases the hardness of both alloys, with TC4 consistently exhibiting higher hardness than TA1. TC4 demonstrates superior oxidation resistance: at 450 °C, it forms a denser oxide layer with lower oxygen uptake, while at 750 °C, its oxide layer thickens more significantly, likely due to increased brittleness and spallation. This study underscores the profound impact of high-temperature oxidation on the microstructure and mechanical properties of titanium alloys and highlights the critical role of oxide layer density and stability in determining oxidation resistance. These findings provide valuable insights for the application of TA1 and Ti-6Al-4V alloys in high-temperature environments
Simulation and Optimization of the Hydraulic System of 3000T Automatic Hydraulic Machine
The Influence of Laser Shock Peening on the Microstructure and Mechanical Properties of AH32 Steel
The mechanical integrity of shipbuilding steel under demanding maritime service conditions is a pivotal factor for ensuring the structural safety and operational longevity of vessels. This research employs laser shock peening (LSP) to augment the surface performance of AH32 steel and carries out a comprehensive analysis of the influence and underlying mechanisms of LSP on both the microstructural evolution and mechanical properties of the material. The results indicate that the LSP treatment successfully introduced a high magnitude residual compressive stress (−162 MPa) at the surface of AH32 steel. Additionally, the surface hardness of LSP-1 and LSP-2 increased by 7.3% and 14.7%, respectively. The tensile test results indicate that Sample LSP-2 achieved a 25.8% improvement in elongation while exhibiting only a 5.9% reduction in ultimate tensile strength. Friction and wear tests demonstrated that the average coefficient of friction for the samples treated with LSP decreased by approximately 18%, while the wear rate reduced significantly by over 40%
The Control Method of Twin Delayed Deep Deterministic Policy Gradient with Rebirth Mechanism to Multi-DOF Manipulator
As a research hotspot in the field of artificial intelligence, the application of deep reinforcement learning to the learning of the motion ability of a manipulator can help to improve the learning of the motion ability of a manipulator without a kinematic model. To suppress the overestimation bias of values in Deep Deterministic Policy Gradient (DDPG) networks, the Twin Delayed Deep Deterministic Policy Gradient (TD3) was proposed. This paper further suppresses the overestimation bias of values for multi-degree of freedom (DOF) manipulator learning based on deep reinforcement learning. Twin Delayed Deep Deterministic Policy Gradient with Rebirth Mechanism (RTD3) was proposed. The experimental results show that RTD3 applied to multi degree freedom manipulators is in place, with an improved learning ability by 29.15% on the basis of TD3. In this paper, a step-by-step reward function is proposed specifically for the learning and innovation of the multi degree of freedom manipulator’s motion ability. The view of continuous decision-making and process problem is used to guide the learning of the manipulator, and the learning efficiency is improved by optimizing the playback of experience. In order to measure the point-to-point position motion ability of a manipulator, a new evaluation index based on the characteristics of the continuous decision process problem, energy efficiency distance, is presented in this paper, which can evaluate the learning quality of the manipulator motion ability by a more comprehensive and fair evaluation algorithm.</jats:p
Effects of Nanosecond-Pulsed Laser Milling on the Surface Properties of Al2O3 Ceramics
The effect of nanosecond-pulsed laser milling on the surficial microstructure of Al2O3 ceramics is studied in this work. The macrostructure, microstructure, surface roughness, and milling depth of the ceramics are analyzed via scanning electron microscopy and confocal laser scanning microscopy. The results reveal that the surface roughness and the milling depth of Al2O3 ceramics increase with increasing laser power, laser repetition rate, and scanning times. After nanosecond-pulsed laser milling, cavities as well as molten and granular solidified structures are observed on the Al2O3 ceramic surface, which indicate that the main mechanism of nanolaser milling is the melting and gasification caused by the interaction between the laser and the material
