22 research outputs found
Energy Schedule Setting Based on Clustering Algorithm and Pattern Recognition for Non-Residential Buildings Electricity Energy Consumption
Building energy modelling (BEM) is crucial for achieving energy conservation in buildings, but occupant energy-related behaviour is often oversimplified in traditional engineering simulation methods and thus causes a significant deviation between energy prediction and actual consumption. Moreover, the conventional fixed schedule-setting method is not applicable to the recently developed data-driven BEM which requires a more flexible and data-related multi-timescales schedule-setting method to boost its performance. In this paper, a data-based schedule setting method is developed by applying K-medoid clustering with Principal Component Analysis (PCA) dimensional reduction and Dynamic Time Warping (DTW) distance measurement to a comprehensive building energy historical dataset, partitioning the data into three different time scales to explore energy usage profile patterns. The Year–Month data were partitioned into two clusters; the Week–Day data were partitioned into three clusters; the Day–Hour data were partitioned into two clusters, and the schedule-setting matrix was developed based on the clustering result. We have compared the performance of the proposed data-driven schedule-setting matrix with default settings and calendar data using a single-layer neural network (NN) model. The findings show that for the data-driven predictive BEM, the clustering results-based data-driven schedule setting performs significantly better than the conventional fixed schedule setting (with a 25.7% improvement) and is more advantageous than the calendar data (with a 9.2% improvement). In conclusion, this study demonstrates that a data-related multi-timescales schedule matrix setting method based on cluster results of building energy profiles can be more suitable for data-driven BEM establishment and can improve the data-driven BEMs performance
Deadline-constrained workflow scheduling in IaaS clouds with multi-resource packing
Workflow is a common model to represent large computations composed of dependent tasks. Most existing workflow scheduling algorithms use computing resources in a non-multiprogrammed way, by which only one task can run on a service (machine) at a time. In this paper, we study a new workflow scheduling model on heterogeneous Infrastructure-as-a-Service (IaaS) platforms, which allows multiple tasks to run concurrently on a virtual machine (VM) according to their multi-resource demands. First, we propose a list-scheduling framework for the new multiprogrammed cloud resource model. In the order of a priority list, this framework gradually appoints tasks the best placements found on both existing and new VMs on the platform. Different task prioritization and placement comparison methods can be employed for different scheduling objectives. To fully exploit the heterogeneity of IaaS platforms, the VMs can be scaled up during the scheduling process. Then, we propose a deadline-constrained workflow scheduling algorithm (called DyDL) based on this framework to optimize the cost of workflow execution. This algorithm prioritizes tasks by their latest start times and appoints tasks the placements which can meet their latest start times and incur the minimal cost increases. Experimental results show that DyDL can achieve significantly better schedules in most test cases compared to several existing deadline-constrained workflow scheduling algorithms.Ministry of Education (MOE)Accepted versionThis work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 under Grant MOE2013-T2-2-067, and Academic Research Fund Tier 1 under Grant 2017-T1-002-024
Bayesian Calibration for Office-Building Heating and Cooling Energy Prediction Model
Conventional building energy models (BEM) for heating and cooling energy-consumption prediction without calibration are not accurate, and the commonly used manual calibration method requires the high expertise of modelers. Bayesian calibration (BC) is a novel method with great potential in BEM, and there are many successful applications for unknown-parameters calibrating and retrofitting analysis. However, there is still a lack of study on prediction model calibration. There are two main challenges in developing a calibrated prediction model: (1) poor generalization ability; (2) lack of data availability. To tackle these challenges and create an energy prediction model for office buildings in Guangdong, China, this paper characterizes and validates the BC method to calibrate a quasi-dynamic BEM with a comprehensive database including geometry information for various office buildings. Then, a case study analyzes the effectiveness and performance of the calibrated prediction model. The results show that BC effectively and accurately calibrates quasi-dynamic BEM for prediction purposes. The calibrated model accuracy (monthly CV(RMSE) of 0.59% and hourly CV(RMSE) of 19.35%) meets the requirement of ASHRAE Guideline 14. With the calibrated prediction model, this paper provides a new way to improve the data quality and integrity of existing building energy databases and will further benefit usability
Bayesian Calibration for Office-Building Heating and Cooling Energy Prediction Model
Conventional building energy models (BEM) for heating and cooling energy-consumption prediction without calibration are not accurate, and the commonly used manual calibration method requires the high expertise of modelers. Bayesian calibration (BC) is a novel method with great potential in BEM, and there are many successful applications for unknown-parameters calibrating and retrofitting analysis. However, there is still a lack of study on prediction model calibration. There are two main challenges in developing a calibrated prediction model: (1) poor generalization ability; (2) lack of data availability. To tackle these challenges and create an energy prediction model for office buildings in Guangdong, China, this paper characterizes and validates the BC method to calibrate a quasi-dynamic BEM with a comprehensive database including geometry information for various office buildings. Then, a case study analyzes the effectiveness and performance of the calibrated prediction model. The results show that BC effectively and accurately calibrates quasi-dynamic BEM for prediction purposes. The calibrated model accuracy (monthly CV(RMSE) of 0.59% and hourly CV(RMSE) of 19.35%) meets the requirement of ASHRAE Guideline 14. With the calibrated prediction model, this paper provides a new way to improve the data quality and integrity of existing building energy databases and will further benefit usability
