172 research outputs found

    Corrosion-induced deterioration and fracture mechanisms in ultra-high-performance fiber-reinforced concretet

    Get PDF
    Ultra-high-performance fiber-reinforced concrete (UHPFRC) is an excellent material for harsh environments, but corrosion will change its internal microstructure and complicate the fracture evolution, bringing great difficulties in evaluating the long-term service life. Limited attention has been paid to the fracture mechanism of the UHPFRC upon corrosion. In the present study, integrating acoustic emission (AE) and digital image correlation (DIC) techniques are used to assess the micro/macrocracking characteristics of the specimens upon various corrosion degrees. Results show that the 56-day corroded UHPFRC with 2 vol% presents a remarkable decrease rate of 32%, 29% and 30% in the flexural stiffness, flexural strength and compressive strength. During the loading process, compaction of the original defects induced by fiber corrosion is concentrated in the elastic stage, the newborn cracks triggered by loading mainly occur in the strain-hardening stage, and the expansion of cracks mainly lies in the strain-softening stage. Corroded UHPFRC specimens with higher corrosion damage have a greater maximum strain value at the crack. In addition, the failure mode changes from shear crack failure to a brittle failure of tensile crack as corrosion damage increases. The macroscopic destruction of the corroded UHPFRC is a manifestation of internal microdamage evolution in fiber corrosion and matrix deterioration.</p

    Investigation of the dynamic mechanical response of corroded ultra-high performance fiber reinforced concrete (UHPFRC) with initial defects

    Get PDF
    This study addresses the dynamic mechanical response of the corroded ultra-high-performance fiber-reinforced concrete (UHPFRC) with initial defects, considering the possibility of corrosion deterioration induced by various pre-existing cracks during the long-term service life. For this purpose, an integrated accelerated corrosion method and Split Hopkinson Pressure Bar (SHPB)/high-speed camera etc. techniques are employed. Results show that increasing pre-impacting damage promotes the crack density and maximum width by 32.4%–62.3 % and 1.11–1.8 times, respectively. In terms of mechanical properties, coupling damages of initial defects and corrosion have adverse effects on the dynamic mechanical response. Typical fib Model Code 2010 applies to predict the DIF evolution of the corroded UHPFRC with initial defects. Numerous shear cracks are created at an angle along the weak interface as the corroded specimens with initial defects are again subjected to axial loading, revealing the associated failure mechanism. These results shed light on the dynamic response of corroded UHPFRC containing various initial defects and the failure mechanism gives some reference to service status evaluation.</p

    High performance CaCO<sub>3</sub>-based composites using sodium tripolyphosphate as phase controlling additive:Bamboo fiber driven high strength development

    Get PDF
    Due to the limited carbonation degree caused by the surface densification of carbonated products, the development of high-strength carbonated composites remains challenging. In this work, bamboo fiber (BFs) is utilized as a reaction reinforcing agent along with sodium tripolyphosphate (STPP) as a CaCO3 phase controlling additive to prepare high-strength bamboo fiber reinforced carbonated wollastonite composites (BFRCWs). The phase composition and microstructure are systematically investigated by multiscale physicochemical analysis, followed by the determination of macro properties and volume deformation. Results indicate that BF and STPP have a synergistic effect on the microstructural formation and macro performance of BFRCWs. STPP-treated BF (ST-BF) can serve as an internal curing agent and the porous structure of BF provides more channels for ion and CO2 transport, whereas CaCO3 phase composition and cementitious behavior is modified by STPP. The addition of ST-BF, particularly for long fibers, accelerates the carbonation reaction, resulting in an increased ratio of poorly crystalline CaCO3 and a refined pore structure. With increasing ST-BF dosage (0–3 vol%), the cementitious reaction is enhanced, but excessive fibers (3 vol%) incorporation introduces additional porosity, consequently reducing compressive strength. The desired pore structure with the optimal 2 vol% ST-BF (3–6 mm) shows the highest strength of 103.5 MPa at 28 days.</p

    Effects of relative humidity on carbonation kinetics and strength development of carbonated wollastonite composites containing sodium tripolyphosphate

    Get PDF
    Assessing the impact of relative humidity (RH) on carbonation kinetics is crucial for the sustainable and high-strength advancement of CO2-activated Ca-bearing materials incorporating phase-controlling additives. This work focuses on the carbonation kinetics, mechanical properties, and microstructure evolution of carbonated wollastonite composites containing sodium tripolyphosphate (STPP) when exposed to various RH levels. Results show that RH plays an important role during the carbonation of wollastonite, functioning both as a reaction material and accelerating role for wollastonite carbonation. The carbonation rate and the phase transition reaction of poorly crystalline CaCO3 is accelerated at RH ranging from 70% to 95%, favouring to cementitious behaviour of CaCO3 and results in denser microstructure, especially for 85% RH. The carbonation reaction is composed of two distinct stages, namely, wollastonite dissolution and precipitation of the stage-1 and ion-diffusion controlling of stage-2. Among them, the addition of STPP prolong the carbonation duration of stage-1. The degree of carbonation (DOC) of the internal layer sample is higher than that of the outermost layer sample. CaCO3 and silica gel are evenly distributed indirectly, which reduces the elastic modulus at 85 % RH. However, regardless of RH, the cementitious efficiency of poorly crystalline CaCO3 is the highest, followed by calcite and silica gel. Consequently, STPP modified carbonated wollastonite shows highest strength when exposed to 85% RH (67.3 MPa at 7 days). Our study provides a unique way toward developing the STPP-containing carbonated wollastonite system for high performance carbonated materials.</p

    Case Report: Disseminated actinomycosis-induced splenic rupture with spleen and liver abscesses

    Get PDF
    Disseminated actinomycosis is a rare, slowly progressing infection caused by Actinomyces species and can manifest as the formation of multiple abscesses and sulfur granules in infected tissues. In this report of this rare disease, the pathogens were not traced at the initial stage, and extremely rare but dangerous complications occurred, resulting in a new research perspective for the early identification of this rare disease. This study reports a case of disseminated actinomycosis in a 59-year-old Asian female with a history of lung infection. She experienced splenic rupture after mild percussion performed due to abdominal pain, accompanied by fever and sepsis; the rupture was effectively managed with conservative treatment; however, she experienced delayed splenic rupture later. Pathological examination of spleen and liver biopsy samples revealed chronic suppurative inflammation with abscesses, and the surrounding hyphae were arranged radially, the metagenome next-generation sequencing of pus shows that it belongs to Actinomyces israelii. The patient was cured with splenectomy and comprehensive treatment, including anti-infective therapy combined with imipenem/cilastatin, penicillin and antishock therapy. The results of this study emphasize the importance of etiology tracing and accurate, early treatment for the disease. Moreover, if minor trauma leads to unexpected damage to internal organs, the possibility of the coexistence of other etiologies should be considered

    A Conscious Resting State fMRI Study in SLE Patients Without Major Neuropsychiatric Manifestations

    Get PDF
    Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the main causes of death in patients with systemic lupus erythematosus (SLE). Signs and symptoms of NPSLE are heterogeneous, and it is hard to diagnose, and treat NPSLE patients in the early stage. We conducted this study to explore the possible brain activity changes using resting state functional magnetic resonance imaging (rs-fMRI) in SLE patients without major neuropsychiatric manifestations (non-NPSLE patients). We also tried to investigate the possible associations among brain activity, disease activity, depression, and anxiety. In our study, 118 non-NPSLE patients and 81 healthy controls (HC) were recruited. Rs-fMRI data were used to calculate the regional homogeneity (ReHo) in all participants. We found decreased ReHo values in the fusiform gyrus and thalamus and increased ReHo values in the parahippocampal gyrus and uncus. The disease activity was positively correlated with ReHo values of the cerebellum and negatively correlated with values in the frontal gyrus. Several brain areas showed correlations with depressive and anxiety statuses. These results suggested that abnormal brain activities might occur before NPSLE and might be the foundation of anxiety and depression symptoms. Early detection and proper treatment of brain dysfunction might prevent the progression to NPSLE. More studies are needed to understand the complicated underlying mechanisms

    Nodules on the Lower Legs With Ankle Joint Pain

    Full text link
    corecore