9,393 research outputs found
Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage
2010-2011 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2
A three-dimensional system of interacting spins typically develops static
long-range order when it is cooled. If the spins are quantum (S = 1/2),
however, novel quantum paramagnetic states may appear. The most highly sought
state among them is the resonating valence bond (RVB) state in which every pair
of neighboring quantum spins form entangled spin singlets (valence bonds) and
the singlets are quantum mechanically resonating amongst all the possible
highly degenerate pairing states. Here we provide experimental evidence for
such quantum paramagnetic states existing in frustrated antiferromagnets,
ZnxCu4-x(OD)6Cl2, where the S = 1/2 magnetic Cu2+ moments form layers of a
two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted
kagome planes are weakly coupled to each other, a dispersionless excitation
mode appears in the magnetic excitation spectrum below ~ 20 K, whose
characteristics resemble those of quantum spin singlets in a solid state, known
as a valence bond solid (VBS), that breaks translational symmetry. Doping
nonmagnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens
the interplane coupling but also dilutes the magnetic occupancy of the kagome
lattice. The VBS state is suppressed and for ZnCu3(OD)6Cl2 where the kagome
planes are undistorted and 90% occupied by the Cu2+ ions, the low energy spin
fluctuations in the spin liquid phase become featureless
Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate
Thin Yba[SUB2]Cu[SUB3]O[SUB7-δ/La[SUB0.67]Ca[SUB0.33]MnO[SUB3] (YBCO/LCMO) films were grown on SrTiO[SUB3](STO)substrates by magnetron sputtering technique. The microstructures of the bilayers were characterized and a standard four-probe technique was applied to measure the resistivity of the samples. The interdiffusions at the YBCO/LCMO and LCMO/STO interfaces formed two transient layers with the thickness of about 3 and 2 nm, respectively. All the bilayers were well textured along the c axis. At low temperature, the superconductivity can only be observed when the thickness of YBCO is more than 25 nm. When the thickness of YBCO is less than 8 nm, the bilayers show only ferromagnetism. The superconductivity and ferromagnetism perhaps coexist in the bilayer with the YBCO thickness of 12.5 nm. These interesting properties are related to the interaction between spin polarized electrons in the manganites and the cooper pairs in the cuprates. © 2003 American Institute of Physics.published_or_final_versio
Isolation of Robinsoniella peoriensis from the fecal material of the endangered Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis
The aim of this study was to determine the causative agent of diarrhea in an endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). From the fecal material collected from this porpoise Robinsoniella peoriensis was isolated. (C) 2013 Elsevier Ltd. All rights reserved.The aim of this study was to determine the causative agent of diarrhea in an endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). From the fecal material collected from this porpoise Robinsoniella peoriensis was isolated. (C) 2013 Elsevier Ltd. All rights reserved
Spinons and triplons in spatially anisotropic frustrated antiferromagnets
The search for elementary excitations with fractional quantum numbers is a
central challenge in modern condensed matter physics. We explore the
possibility in a realistic model for several materials, the spin-1/2 spatially
anisotropic frustrated Heisenberg antiferromagnet in two dimensions. By
restricting the Hilbert space to that expressed by exact eigenstates of the
Heisenberg chain, we derive an effective Schr\"odinger equation valid in the
weak interchain-coupling regime. The dynamical spin correlations from this
approach agree quantitatively with inelastic neutron measurements on the
triangular antiferromagnet Cs_2CuCl_4. The spectral features in such
antiferromagnets can be attributed to two types of excitations: descendents of
one-dimensional spinons of individual chains, and coherently propagating
"triplon" bound states of spinon pairs. We argue that triplons are generic
features of spatially anisotropic frustrated antiferromagnets, and arise
because the bound spinon pair lowers its kinetic energy by propagating between
chains.Comment: 16 pages, 6 figure
Unified force law for granular impact cratering
Experiments on the low-speed impact of solid objects into granular media have
been used both to mimic geophysical events and to probe the unusual nature of
the granular state of matter. Observations have been interpreted in terms of
conflicting stopping forces: product of powers of projectile depth and speed;
linear in speed; constant, proportional to the initial impact speed; and
proportional to depth. This is reminiscent of high-speed ballistics impact in
the 19th and 20th centuries, when a plethora of empirical rules were proposed.
To make progress, we developed a means to measure projectile dynamics with 100
nm and 20 us precision. For a 1-inch diameter steel sphere dropped from a wide
range of heights into non-cohesive glass beads, we reproduce prior observations
either as reasonable approximations or as limiting behaviours. Furthermore, we
demonstrate that the interaction between projectile and medium can be
decomposed into the sum of velocity-dependent inertial drag plus
depth-dependent friction. Thus we achieve a unified description of low-speed
impact phenomena and show that the complex response of granular materials to
impact, while fundamentally different from that of liquids and solids, can be
simply understood
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes
We report that 30-inch scale multiple roll-to-roll transfer and wet chemical
doping considerably enhance the electrical properties of the graphene films
grown on roll-type Cu substrates by chemical vapor deposition. The resulting
graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 %
transparency which is superior to commercial transparent electrodes such as
indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as
low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum
Hall effect, indicating the high-quality of these graphene films. As a
practical application, we also fabricated a touch screen panel device based on
the graphene transparent electrodes, showing extraordinary mechanical and
electrical performances
Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.
PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype
The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake
We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms
- …
