7,835 research outputs found
Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?
Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the India-Eurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene
Numerical simulation on the impact of the bionic structure on aerodynamic noises of sidewindow regions in vehicles
The paper adopted a bionic hemispherical convex structure in the A pillar-rear view mirror regions according to actual requirements. Furthermore, impacts of the bionic structure on aerodynamic characteristics and noises in the region were studied. Friction resistance of airflows was greatly reduced, fluctuations and pulsation pressures of flow fields were also reduced, and characteristics of flow fields and sound fields were improved. The computational results were finally verified by the experimental test. Firstly, the aerodynamic lift force coefficient and drag force coefficient of the bionic model were computed, and they were obviously lower than those of the original model. The adhesive force between tires and ground during vehicle running was increased, and the danger degree of “waving” of high-speed vehicle running was weakened. In this way, stability of vehicle running could be improved. Secondly, flow fields of the bionic model were computed. Compared with the original model, an obvious vortex was behind the original model, while no vortexes were behind the bionic model. Therefore, convex structures of the bionic model had obvious impacts on flow fields behind the rear view mirror. Airflow separation situations were obvious improved at wheels, windshield and rear side windows of the bionic model. Due to blocking of convex structures of the A pillar and rear view mirror in the bionic model, airflows was hindered and obvious dragging phenomena were formed. Therefore, flow fields in the side window regions could be improved greatly. In addition, the flow field scope under the rear view mirror in the bionic model was also decreased. Ringed vortex structures appeared behind the rear view mirror in the bionic model. The ringed vortex structures were closely interlaced and then extended together backwards. Vortexes behind the rear view mirror in the original model were chaotic, where most of them were attached on the surface of side windows. In the original model, turbulent flows with certain strength were on the right upper corner of the side window region. In the bionic model, no turbulent flows were in the same regions. This result indicated that through using the bionic convex structures, airflows flowing through side windows could be combed and could move backwards towards upper and lower edges of the side windows. It could be predicted that pulsation pressures on the side window surface would surely decrease. Therefore, aerodynamic noises caused by pulsation pressures in side window regions would also be improved correspondingly. Especially in regions behind A pillar-rear view mirrors, the maximum noise reduction amplitude reached about 20 dB
Assessing the economic performance of an environmental sustainable supply chain in reducing environmental externalities
This study investigates the mechanism that motivates supply chain firms to reduce environmental ex- ternalities while balancing the economic feasibility of the supply chain system under environmentally constrained circumstances in a competitive market. Taking government policy incentives into account, a quantitative model of an integrated supply chain that incorporates sustainable constraints is formu- lated to optimize supply chain firms’ operational strategies of producing environmental friendly products (EFPs). This study contributes to the literature with a better understanding the interplay and interrelation of multiple sustainable constraints and their impact on supply chain firms’ collaborative decisions. Our findings suggest that the decisions of operating EFPs are subject to sustainable constraints and that the government policy incentives play a dominant role overseeing supply chain firms’ environmental behav- iors toward sustainability
Research on sound insulation characteristics of the friction stir welding magnesium alloy sheet
The friction stir welding (FSW) on magnesium alloy has already been widely used. Therefore, the research on its sound insulation characteristics appears particularly significant, based on ALE (Arbitrary Lagrangian Eulerian) adaptive meshing technique of ABAQUS/Explicit, the FSW procedure was numerically simulated and the modal solution, just a little different from the experimental result, was finally obtained, which has verified the validity of the established model, and obtain the response result to be imported into professional acoustic software to calculate the sound insulation characteristics. Subsequently, the structure-acoustic coupling method was employed to calculate the noise reduction in FSW on magnesium alloy, and through comparison with the experimental result, this coupling method proved feasible to predict the sound insulation characteristics in FSW on magnesium alloy. Furthermore, the result has also revealed that FSW could increase the noise reduction at intermediate or low frequency, in addition, which was 2 dB higher on the frontal welding surface than the reverse one. Consequently, at the installation of magnesium alloy welding parts, the frontal or reverse surface shall be reasonably selected to face the noise source in accordance with the practical situation, so as to improve the sound insulation performance to a greater extent. To some extent, the research achieves the combination of welding and acoustic
Research on sound radiation characteristics of the high-speed train wheel
Taking the standard wheel model as an example, the radiation noise of a single wheel under excitation force which is computed by multi-body dynamics model is computed by acoustic boundary element method (BEM). Then, the damped wheel is proposed, and the sound radiation characteristics of both wheels are analyzed and compared. The results show that sound field of a single wheel presents an obvious directivity with petaloid change and continuous decrease, and the wheel tread and web contribute the most rolling noise. Compared with the standard wheel, the acoustic radiation power of the damped wheel decreased significantly, especially at the peak frequency. After that, the radiation noise generated by the wheel in the train is researched. The results show that the radiation noise generated by the wheel in the train is a complex sound field after the superposition and interference of multiple wheel noises, which are mainly in the bogies at both ends and its vicinity region. Meanwhile, the basic directivity characteristics of the petaloid change and continuous reduction are remained. The radiation noise which is generated by the wheel in the train has obvious peak characteristic, whose corresponding peak noises are below 110 dB. The radiation noise of the damped wheel is significantly smaller than that of the standard wheel at most frequency bands, and the total SPL at the observation point has decreased by 14.5 dB with obvious noise reduction effect. In order to further research the radiation noise of the damping wheel, influence factors on the noise reduction are analyzed. Finally, these parameters such as thickness and material should be considered comprehensively during designing the damping wheel, in order to find the optimal combination of all parameters
Fluorescent nanoparticles for sensing
Nanoparticle-based fluorescent sensors have emerged as a competitive
alternative to small molecule sensors, due to their excellent
fluorescence-based sensing capabilities. The tailorability of design,
architecture, and photophysical properties has attracted the attention of many
research groups, resulting in numerous reports related to novel nanosensors
applied in sensing a vast variety of biological analytes. Although
semiconducting quantum dots have been the best-known representative of
fluorescent nanoparticles for a long time, the increasing popularity of new
classes of organic nanoparticle-based sensors, such as carbon dots and
polymeric nanoparticles, is due to their biocompatibility, ease of synthesis,
and biofunctionalization capabilities. For instance, fluorescent gold and
silver nanoclusters have emerged as a less cytotoxic replacement for
semiconducting quantum dot sensors. This chapter provides an overview of recent
developments in nanoparticle-based sensors for chemical and biological sensing
and includes a discussion on unique properties of nanoparticles of different
composition, along with their basic mechanism of fluorescence, route of
synthesis, and their advantages and limitations
ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model
The ChatGPT, a lite and conversational variant of Generative Pretrained
Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large
Language Models (LLMs) with billions of parameters. LLMs have stirred up much
interest among researchers and practitioners in their impressive skills in
natural language processing tasks, which profoundly impact various fields. This
paper mainly discusses the future applications of LLMs in dentistry. We
introduce two primary LLM deployment methods in dentistry, including automated
dental diagnosis and cross-modal dental diagnosis, and examine their potential
applications. Especially, equipped with a cross-modal encoder, a single LLM can
manage multi-source data and conduct advanced natural language reasoning to
perform complex clinical operations. We also present cases to demonstrate the
potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical
application. While LLMs offer significant potential benefits, the challenges,
such as data privacy, data quality, and model bias, need further study.
Overall, LLMs have the potential to revolutionize dental diagnosis and
treatment, which indicates a promising avenue for clinical application and
research in dentistry
Can minimally invasive puncture and drainage for hypertensive spontaneous Basal Ganglia intracerebral hemorrhage improve patient outcome: a prospective non-randomized comparative study
BACKGROUND: The treatment of hypertensive spontaneous intracranial hemorrhage (ICH) is still controversial. The purpose of the present study was to investigate whether minimally invasive puncture and drainage (MIPD) could improve patient outcome compared with decompressive craniectomy (DC). METHODS: Consecutive patients with ICH (≧30 mL in basal ganglia within 24 hours of ictus) were non-randomly assigned to receive MIPD (group A) or DC (group B) hematoma evacuation. The primary outcome was death at 30 days after onset. Functional independence was assessed at 1 year using the Glasgow Outcome Scale. RESULTS: A total of 198 patients met the per protocol analysis (84 in group A and 114 in group B). The initial Glasgow Coma Scale (GCS) score was 8.1 ± 3.4 and the National Institutes of Health Stroke Scale (NIHSS) score was 20.8 ± 5.3. The mean hematoma volume (HV) was 56.7 ± 23.0 mL, and there was extended intraventricular hemorrhage (IVH) in 134 patients. There were no significant intergroup differences in the above baseline data, except group A had a higher mean age than that of group B (59.4 ± 14.5 vs. 55.3 ± 11.1 years, P = 0.025). The cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B. However, the mortality for patients ≦60 years, NIHSS < 15 or HV≦60 mL was significantly lower in group A than that in group B (all P < 0.05). The cumulative functional independence at 1 year was 26.8%, and the difference between group A (33/84, 39.3%) and group B (20/114, 17.5%) was significant (P = 0.001). Multivariate logistic regression analysis showed that a favorable outcome after 1 year was associated with the difference in therapies, age, GCS, HV, IVH and pulmonary infection (all P <0.05). CONCLUSIONS: For patients with hypertensive spontaneous ICH (HV≧30 mL in basal ganglia), MIPD may be a more effective treatment than DC, as assessed by a higher rate of functional independence at 1 year after onset as well as reduced mortality in patients ≦60 years of age, NIHSS < 15 or HV≦60 mL
- …
