1,999 research outputs found
Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets
Surface acceleration of fast electrons in intense laser-plasma interaction is
improved by using sub-wavelength grating targets. The fast electron beam
emitted along the target surface was enhanced by more than three times relative
to that by using planar target. The total number of the fast electrons ejected
from the front side of target was also increased by about one time. The method
to enhance the surface acceleration of fast electron is effective for various
targets with sub-wavelength structured surface, and can be applied widely in
the cone-guided fast ignition, energetic ion acceleration, plasma device, and
other high energy density physics experiments.Comment: 14 pages, 4figure
Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on quasi-three-dimensional micropatterns formed with poly (l-lactic acid)
Introduction:
In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs).
Methods and materials:
SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY.
Results:
It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness.
Conclusion:
These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds
Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes
Background
Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection.
Methods
Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology.
Results
Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3–10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host’s Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis.
Conclusions
Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity
Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFeAs, an Fe-pnictide superconductor parent compound
Using angle resolved photoemission it is shown that the low lying electronic
states of the iron pnictide parent compound EuFeAs are strongly
modified in the magnetically ordered, low temperature, orthorhombic state
compared to the tetragonal, paramagnetic case above the spin density wave
transition temperature. Back-folded bands, reflected in the orthorhombic/
anti-ferromagnetic Brillouin zone boundary hybridize strongly with the
non-folded states, leading to the opening of energy gaps. As a direct
consequence, the large Fermi surfaces of the tetragonal phase fragment, the low
temperature Fermi surface being comprised of small droplets, built up of
electron and hole-like sections. These high resolution ARPES data are therefore
in keeping with quantum oscillation and optical data from other undoped
pnictide parent compounds.Comment: 4 figures, 6 page
MIX-TPI:a flexible prediction framework for TCR–pMHC interactions based on multimodal representations
Motivation: The interactions between T-cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) are essential for the adaptive immune system. However, identifying these interactions can be challenging due to the limited availability of experimental data, sequence data heterogeneity, and high experimental validation costs. Results: To address this issue, we develop a novel computational framework, named MIX-TPI, to predict TCR–pMHC interactions using amino acid sequences and physicochemical properties. Based on convolutional neural networks, MIX-TPI incorporates sequence-based and physicochemical-based extractors to refine the representations of TCR–pMHC interactions. Each modality is projected into modality-invariant and modality-specific representations to capture the uniformity and diversities between different features. A self-attention fusion layer is then adopted to form the classification module. Experimental results demonstrate the effectiveness of MIX-TPI in comparison with other state-of-the-art methods. MIX-TPI also shows good generalization capability on mutual exclusive evaluation datasets and a paired TCR dataset.</p
Development of a P300 Brain–Machine Interface and Design of an Elastic Mechanism for a Rehabilitation Robot
This paper focuses on the development of a P300 speller and the design of a rehabilitation robot using a brain-machine interface. The combined feature set provides a norm that can be used to assess trends of the user’s increased or decreased independence. The combined feature set is found to maintain a 90% sorting rate; it can also reduce the relationship of individual independence for each subject. Among the results, the highest P300 classification accuracy can be increased by 36.04%. A novel adaptive coupled elastic actuator (ACEA) is proposed that uses adjustable characteristics to adapt to the applied output and input forces, thus ensuring safe human-machine interaction without the use of complex control strategies. The proposed robotic system uses variable impedance to achieve adaptability and safety in dynamic unstructured environments. This paper discusses the design, model, control, and performance of the ACEA. </p
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
- …
