8,417 research outputs found

    Star Formation Properties in Barred Galaxies(SFB). III. Statistical Study of Bar-driven Secular Evolution using a sample of nearby barred spirals

    Get PDF
    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend to be coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges towards stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of bar-driven physical process, while future work is needed because of the uncertainties.Comment: 30 single-column pages, 9 figures, accepted for publication in A

    The disappearance of a narrow Mg II absorption system in quasar SDSS J165501.31+260517.4

    Full text link
    In this letter, we present for the first time, the discovery of the disappearance of a narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system from the spectra of quasar SDSS J165501.31+260517.4 (ze=1.8671z_{\rm e}=1.8671). This absorber is located at zabs=1.7877z_{\rm abs} =1.7877, and has a velocity offset of 8,423 km s18,423\rm ~km~s^{-1} with respect to the quasar. According to the velocity offset and the line variability, this narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system is likely intrinsic to the quasar. Since the corresponding UV continuum emission and the absorption lines of another narrow Mg II λλ2796,2803\lambda\lambda2796,2803 absorption system at zabs=1.8656z_{\rm abs}=1.8656 are very stable, we think that the disappearance of the absorption system is unlikely to be caused by the change in ionization of absorption gas. Instead, it likely arises from the motion of the absorption gas across the line of sight

    Enhancement of steady-state bosonic squeezing and entanglement in a dissipative optomechanical system

    Full text link
    We systematically study the influence of amplitude modulation on the steady-state bosonic squeezing and entanglement in a dissipative three-mode optomechanical system, where a vibrational mode of the membrane is coupled to the left and right cavity modes via the radiation pressure. Numerical simulation results show that the steady-state bosonic squeezing and entanglement can be significantly enhanced by periodically modulated external laser driving either or both ends of the cavity. Remarkably, the fact that as long as one periodically modulated external laser driving either end of the cavities is sufficient to enhance the squeezing and entanglement is convenient for actual experiment, whose cost is that required modulation period number for achieving system stability is more. In addition, we numerically confirm the analytical prediction for optimal modulation frequency and discuss the corresponding physical mechanism.Comment: 25 pages, 8 figures, accepted for publication in Optics Expres
    corecore