11,032 research outputs found

    Observation of double percolation transitions in Ag-SnO2_2 nanogranular films

    Full text link
    Two percolation transitions are observed in Agx_x(SnO2)1x_2)_{1-x} nanogranular films with Ag volume fraction xx ranging from \sim0.2 to \sim0.9. In the vicinity of each percolation threshold xcix_{ci} (ii==1, 2), the variation in σ\sigma with xx obeys a power law for xx>>xcix_{ci}. The origin of the first percolation transition at xc1x_{c1} (xc1x_{c1}>>xc2x_{c2}) is similar to that of the classical one, while the second transition is explained as originating from the tunneling to the second-nearest neighboring Ag particles. These observations provide strong experimental support for the validity of current theories concerning tunneling effect in conductor-insulator nanogranular composites.Comment: 4 pages and 4 figure

    Simultaneous observation of small- and large-energy-transfer electron-electron scattering in three dimensional indium oxide thick films

    Full text link
    In three dimensional (3D) disordered metals, the electron-phonon (\emph{e}-ph) scattering is the sole significant inelastic process. Thus the theoretical predication concerning the electron-electron (\emph{e}-\emph{e}) scattering rate 1/τφ1/\tau_\varphi as a function of temperature TT in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago [A. Schmid, Z. Phys. \textbf{271}, 251 (1974)]. We report here the simultaneous observation of small- and large-energy-transfer \emph{e}-\emph{e} scattering in 3D indium oxide thick films. In temperature region of T100T\gtrsim100\,K, the temperature dependence of resistivities curves of the films obey Bloch-Gr\"{u}neisen law, indicating the films possess degenerate semiconductor characteristics in electrical transport property. In the low temperature regime, 1/τφ1/\tau_\varphi as a function of TT for each film can not be ascribed to \emph{e}-ph scattering. To quantitatively describe the temperature behavior of 1/τφ1/\tau_\varphi, both the 3D small- and large-energy-transfer \emph{e}-\emph{e} scattering processes should be considered (The small- and large-energy-transfer \emph{e}-\emph{e} scattering rates are proportional to T3/2T^{3/2} and T2T^2, respectively). In addition, the experimental prefactors of T3/2T^{3/2} and T2T^{2} are proportional to kF5/23/2k_F^{-5/2}\ell^{-3/2} and EF1E_F^{-1} (kFk_F is the Fermi wave number, \ell is the electron elastic mean free path, and EFE_F is the Fermi energy), respectively, which are completely consistent with the theoretical predications. Our experimental results fully demonstrate the validity of theoretical predications concerning both small- and large-energy-transfer \emph{e}-\emph{e} scattering rates.Comment: 5 pages and 4 figure

    Linear temperature behavior of thermopower and strong electron-electron scattering in thick F-doped SnO2_{2} films

    Full text link
    Both the semi-classical and quantum transport properties of F-doped SnO2_2 thick films (\sim1\,μ\mum) were investigated experimentally. It is found that the resistivity caused by the thermal phonons obeys Bloch-Gr\"{u}neisen law from \sim90 to 300\,K, while only the diffusive thermopower, which varies linearly with temperature from 300 down to 10\,K, can be observed.The phonon-drag thermopower is completely suppressed due to the long electron-phonon relaxation time in the compound. These observations, together with the temperature independent characteristic of carrier concentration, indicate that the conduction electron in F-doped SnO2_2 films behaves essentially like a free electron. At low temperatures, the electron-electron scattering dominates over the electron-phonon scattering and governs the inelastic scattering process. The theoretical predicated scattering rates for both large- and small-energy-transfer electron-electron scattering processes, which are negligibly weak in three-dimensional disordered conventional conductors, are quantitatively tested in this lower carrier concentration and free-electron-like highly degenerate semiconductor

    On the Symmetry Foundation of Double Soft Theorems

    Full text link
    Double-soft theorems, like its single-soft counterparts, arises from the underlying symmetry principles that constrain the interactions of massless particles. While single soft theorems can be derived in a non-perturbative fashion by employing current algebras, recent attempts of extending such an approach to known double soft theorems has been met with difficulties. In this work, we have traced the difficulty to two inequivalent expansion schemes, depending on whether the soft limit is taken asymmetrically or symmetrically, which we denote as type A and B respectively. We show that soft-behaviour for type A scheme can simply be derived from single soft theorems, and are thus non-preturbatively protected. For type B, the information of the four-point vertex is required to determine the corresponding soft theorems, and thus are in general not protected. This argument can be readily extended to general multi-soft theorems. We also ask whether unitarity can be emergent from locality together with the two kinds of soft theorems, which has not been fully investigated before.Comment: 45 pages, 7 figure
    corecore