1,400 research outputs found

    Orthogonal Transform Multiplexing with Memoryless Nonlinearity: a Possible Alternative to Traditional Coded-Modulation Schemes

    Full text link
    In this paper, we propose a novel joint coding-modulation technique based on serial concatenation of orthogonal linear transform, such as discrete Fourier transform (DFT) or Walsh-Hadamard transform (WHT), with memoryless nonlinearity. We demonstrate that such a simple signal construction may exhibit properties of a random code ensemble, as a result approaching channel capacity. Our computer simulations confirm that if the decoder relies on a modified approximate message passing algorithm, the proposed modulation technique exhibits performance on par with state-of-the-art coded modulation schemes that use capacity-approaching component codes. The proposed modulation scheme could be used directly or as a pre-coder for a conventional orthogonal frequency division multiplexing (OFDM) transmitter, resulting in a system possessing all benefits of OFDM along with reduced peak-to-average power ratio (PAPR)

    Effects of hole-boring and relativistic transparency on particle acceleration in overdense plasma irradiated by short multi-PW laser pulses

    Full text link
    Propagation of short and ultra-intense laser pulses in a semi-infinite space of overdense hydrogen plasma is analyzed via fully-relativistic, real geometry particle-in-cell (PIC) simulations including radiation friction. The relativistic transparency and hole-boring regimes are found to be sensitive to the transverse plasma field, backward light reflection, and laser pulse filamentation. For laser intensities approaching I1024I\sim10^{24} W/cm2^2 the direct laser acceleration of protons, along with ion Coulomb explosion, results in their injection into the acceleration phase of the compressed electron wave at the front of the laser pulses. The protons are observed to be accelerated up to 10-20 GeV with densities around a few times the critical density. The effect strongly depends on initial density and laser intensity disappearing with initial density increase and intensity decrease

    Laser-driven high-power X- and gamma-ray ultra-short pulse source

    Full text link
    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.Comment: 8 pages, 5 figures. Presented at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields" 29.09.-02.10.2008, in Frauenworth Monastery, Bavaria, German

    On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons

    Full text link
    We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into account. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.Comment: 15 pages, 10 figures, invited talk presented at the SPIE-2013 conference, Prague, Czech Republic, Apr. 15, 201

    Random data Cauchy theory for supercritical wave equations II : A global existence result

    Full text link
    We prove that the subquartic wave equation on the three dimensional ball Θ\Theta, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in s<1/2Hs(Θ)\cap_{s<1/2} H^s(\Theta). We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave equations developed in our previous work \cite{BT2} and invariant measure considerations which allow us to obtain also precise large time dynamical informations on our solutions

    Теоретичні основи створення системи автоматизованого управління ризиком для об’єктів машинобудування підвищеної небезпеки

    Get PDF
    В монографії викладено основні поняття управління ризиками при екс- плуатації технічних систем та моделі для побудування автоматизованої системи управління ризиками, на основі реалізації комплексу узгоджених заходів щодо забезпечення прийнятного рівня ризику, а також оцінки стійкості деградаційних процесів в елементах об’єктів машинобудування підвищеної небезпеки. Монографія може бути корисною широкому колу науковців та фахівців, які працюють з ТС і діяльність яких пов’язана з визначенням їх предруйнівного стану та прийняттям рішення про продовження, або припинення експлуатації об’єктів машинобудування підвищеної небезпеки

    Relativistic spherical plasma waves

    Full text link
    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.Comment: 6 pages; 4 figure

    Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after

    Full text link
    We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed.Comment: 18 pages, 6 figures, accepted to Appl. Surf. Sc
    corecore