39 research outputs found

    Molecular phylogenetic analysis of Tulipa (Liliaceae) from Aksu-Zhabagly Nature Reserve

    Get PDF
    Barcodes are conserved sequences of genomic, plastid and mitochondrial DNA that can be utilized to uniquely identify an unidentified specimen to its species when conventional identification methods are inapplicable. Among prokaryotic and eukaryotic species, nuclear ribosomal internal transcribed spacer (ITS) sections are one of the most often utilized DNA markers in DNA barcoding and phylogenetic research. In addition to the ribosomal genes, the plastid genes are the most suitable for identifying plant species. The Aksu-Zhabagly Nature Reserve is the oldest nature reserve in Central Asia and is home to 1,312 vascular plant species, 44 of which are categorized as threatened or endangered in Kazakhstan's red data book. In this study, a collection of specimens of uncommon tulip species was compiled, along with their morphological identification and DNA barcoding. The ITS region and parts of the matK and ycf1b genes of tulip plastid DNA were sequenced. The evolutionary link between species of tulips was investigated. Phylogenetic study predicted two Tulipa subclades. Tulipa species have substantially preserved MatK genes. Tulips' ycf1b gene has evolved more slowly than other Liliaceae family members. Nuclear and plastid DNA sequences investigated Tulipa species evolutionary relationships. The findings about the ITS region of nuclear DNA were more definite. Overall, our work shows that genetic data will be important in determining species concepts in this genus, however, even with a molecular perspective pulling apart closely related taxa can be extremely challenging

    Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6

    No full text
    Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47–55°C and pH 6.0–7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3–11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.</jats:p

    Molecular phylogenetic analysis of Tulipa (Liliaceae) from Aksu-Zhabagly Nature Reserve

    No full text
    Barcodes are conserved sequences of genomic, plastid and mitochondrial DNA that can be utilized to uniquely identify an unidentified specimen to its species when conventional identification methods are inapplicable. Among prokaryotic and eukaryotic species, nuclear ribosomal internal transcribed spacer (ITS) sections are one of the most often utilized DNA markers in DNA barcoding and phylogenetic research. In addition to the ribosomal genes, the plastid genes are the most suitable for identifying plant species. The Aksu-Zhabagly Nature Reserve is the oldest nature reserve in Central Asia and is home to 1,312 vascular plant species, 44 of which are categorized as threatened or endangered in Kazakhstan's red data book. In this study, a collection of specimens of uncommon tulip species was compiled, along with their morphological identification and DNA barcoding. The ITS region and parts of the matK and ycf1b genes of tulip plastid DNA were sequenced. The evolutionary link between species of tulips was investigated. Phylogenetic study predicted two Tulipa subclades. Tulipa species have substantially preserved MatK genes. Tulips' ycf1b gene has evolved more slowly than other Liliaceae family members. Nuclear and plastid DNA sequences investigated Tulipa species evolutionary relationships. The findings about the ITS region of nuclear DNA were more definite. Overall, our work shows that genetic data will be important in determining species concepts in this genus, however, even with a molecular perspective pulling apart closely related taxa can be extremely challenging.</jats:p

    Isolation of Bacillus sp. A5.3 Strain with Keratinolytic Activity

    No full text
    Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% β-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site of accumulation of rotten feathers and identified as Bacillus. Among them, the Bacillus sp. A5.3 isolate showed the best keratinolytic properties. Scanning electron microscopy indicated that Bacillus sp. A5.3 cells closely adhere to the feather surface while degrading the feather. It was found that Bacillus sp. A5.3 secretes thermostable alkaline proteolytic and keratinolytic enzymes. Zymographic analysis of the enzymatic extract toward bovine serum albumin, casein, gelatin, and β-keratin revealed the presence of proteases and keratinases with molecular weights 20–250 kDa. The proteolytic and keratinolytic enzymes predominantly belong to the serine protease family. Proteome analysis of the secreted proteins by nano-HPLC coupled with Q-TOF mass spectrometry identified 154 proteins, 13 of which are proteases and peptidases. Thus, strain Bacillus sp. A5.3 holds great promise for use in feather-processing technologies and as a source of proteases and keratinases.</jats:p

    Isolation of <i>Bacillus</i> sp. A5.3 Strain with Keratinolytic Activity

    No full text
    Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% β-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site of accumulation of rotten feathers and identified as Bacillus. Among them, the Bacillus sp. A5.3 isolate showed the best keratinolytic properties. Scanning electron microscopy indicated that Bacillus sp. A5.3 cells closely adhere to the feather surface while degrading the feather. It was found that Bacillus sp. A5.3 secretes thermostable alkaline proteolytic and keratinolytic enzymes. Zymographic analysis of the enzymatic extract toward bovine serum albumin, casein, gelatin, and β-keratin revealed the presence of proteases and keratinases with molecular weights 20–250 kDa. The proteolytic and keratinolytic enzymes predominantly belong to the serine protease family. Proteome analysis of the secreted proteins by nano-HPLC coupled with Q-TOF mass spectrometry identified 154 proteins, 13 of which are proteases and peptidases. Thus, strain Bacillus sp. A5.3 holds great promise for use in feather-processing technologies and as a source of proteases and keratinases
    corecore