3,984 research outputs found
Understanding the in vivo Uptake Kinetics of a Phosphatidylethanolamine-binding Agent \u3csup\u3e99m\u3c/sup\u3eTc-Duramycin
Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague–Dawley rats. Target binding and biodistribution of 99mTc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent
China is on the track tackling Enteromorpha spp forming green tide
Green tide management is supposed to be a long term fight rather than an episode during the 29th Olympic Games for China, since it has been gaining in scale and frequency during the past 3 decades in both marine and estuary environment all over the world. A number of rapid-responding studies including oceanographic comprehensive surveys along the coastline have been conducted during the bloom and post-bloom periods in 2008 by Chinese marine scientists. The preliminary results are as below: (1) phylogenetic analysis indicates that the bloom forming alga forms a clade with representatives of the green seaweed Enteromorpha linza, though, the alga has been identified as E. proliera by means of morphological; (2) the present data suggest that the bloom was originated from south of Yellow Sea, but not the severely affected area near Qingdao City; (3) pathways of reproduction for E. prolifera have approved to be multifarious, including sexual, asexual and vegetative propagation; (4) somatic cells may act as a propagule bank, which is supposed to be a very dangerous transmitting way for its marked movability, adaptability and viability; (5) pyrolysis of the alga showed that three stages appeared during the process, which are dehydration (18–20^o^C), main devolatilization (200–450^o^C) and residual decomposition (450–750^o^C), and activation energy of the alga was determined at 237.23 KJ•mol^-1^. Although the scarce knowlegde on E. prolifera not yet allow a fully understanding of the green tide, some of the results suggests possible directions in further green tide research and management
The Prospects for Immigration Amendments
Obg proteins are a family of P-loop GTPases, conserved from bacteria to human. The Obg protein in Escherichia coli (ObgE) has been implicated in many diverse cellular functions, with proposed molecular roles in two global processes, ribosome assembly and stringent response. Here, using pre-steady state fast kinetics we demonstrate that ObgE is an anti-association factor, which prevents ribosomal subunit association and downstream steps in translation by binding to the 50S subunit. ObgE is a ribosome dependent GTPase; however, upon binding to guanosine tetraphosphate (ppGpp), the global regulator of stringent response, ObgE exhibits an enhanced interaction with the 50S subunit, resulting in increased equilibrium dissociation of the 70S ribosome into subunits. Furthermore, our cryo-electron microscopy (cryo-EM) structure of the 50S? ObgE? GMPPNP complex indicates that the evolutionarily conserved N-terminal domain (NTD) of ObgE is a tRNA structural mimic, with specific interactions with peptidyl-transferase center, displaying a marked resemblance to Class I release factors. These structural data might define ObgE as a specialized translation factor related to stress responses, and provide a framework towards future elucidation of functional interplay between ObgE and ribosome-associated (p) ppGpp regulators. Together with published data, our results suggest that ObgE might act as a checkpoint in final stages of the 50S subunit assembly under normal growth conditions. And more importantly, ObgE, as a (p) ppGpp effector, might also have a regulatory role in the production of the 50S subunit and its participation in translation under certain stressed conditions. Thus, our findings might have uncovered an under-recognized mechanism of translation control by environmental cues
- …
