2,619 research outputs found
A Vector Matroid-Theoretic Approach in the Study of Structural Controllability Over F(z)
In this paper, the structural controllability of the systems over F(z) is
studied using a new mathematical method-matroids. Firstly, a vector matroid is
defined over F(z). Secondly, the full rank conditions of [sI-A|B] are derived
in terms of the concept related to matroid theory, such as rank, base and
union. Then the sufficient condition for the linear system and composite system
over F(z) to be structurally controllable is obtained. Finally, this paper
gives several examples to demonstrate that the married-theoretic approach is
simpler than other existing approaches
Robust global sliding model control for water-hull-propulsion unit interaction systems - part 2: model validation
Unexpected severe hull deformation caused by wave loads poses alignment problem to the propulsion shaft line in large scale ships, which would significantly influence the dynamical performance of the marine propulsion system. How to suppress negative disturbance imposed by the interaction between water-hull-propulsion and ensure the normal operation of the marine propulsion system is a challenging task. To address this issue, a new global sliding model control (GSMC) for marine water-hull-propulsion unit systems is proposed and investigated to obtain more accurate control performance in a series of researches. In Part 1 the GSMC controller has been developed and the bounded nonlinear model uncertainties have been derived based on the experiments and sea trial. In this work the upper boundary of 1,85 % was introduced into the GSMC controller to derive the total control law realising the robust control of the marine propulsion system. Numerical simulations based on the real bulk carrier parameters show a high effectiveness of the GSMC for speed tracking, compared with the traditional sliding model controller and Proportional Integral Derivative (PID) controller. By the proposed and investigated control system in this paper may be developed a simple practical-effective robust control strategy for marine propulsion systems subject to some complex unknown uncertainties through further investigations, validations and modification
Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia.
A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis
Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models.
Metabolic syndrome (MetS), characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD), is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR) is highly expressed in the ileum of the small intestine, which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD) is necessary but not sufficient, while additional vitamin D deficiency (VDD) as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD), the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5), MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD), Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR) knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with resolving metabolic disorders and fatty liver in the HFD+VDD mice. An in vitro analysis showed that DEFA5 peptide could directly suppress Helicobacter hepaticus. Thus, the results of this study reveal critical roles of a vitamin D/VDR axis in optimal expression of defensins and tight junction genes in support of intestinal integrity and eubiosis to suppress NAFLD and metabolic disorders
Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory
[Abstract] The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.National Natural Science Foundation of China; 31320103917State of California; XDA05020700National Space Science Center (China); 2010T2S13National Space Science Center (China); 2012T1S0009Hunan Provincial People's Government (China); 2013TF3006Xunta de Galicia; GRC2014/04
Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice
Protein-protein interaction of meiosis-related genes with the targets predicted by the DEM associated with meiosis. Table S18. 21 nt-phasiRNAs triggered by the miR2118. Table S19. 24 nt-phasiRNAs triggered by the miR2275. Table S20. Overview of 24 nt TEs-siRNAs during pollen and embryo sac development of 02428-4x and 02428-2x. Table S21. Distribution of 24 nt TEs-siRNAs in autotetraploid and diploid rice. Table S22. Differentially expressed 24 nt TEs-siRNAs during pollen and embryo sac development of autotetraploid rice. Table S23. Anther length during pollen development stages in autotetraploid and diploid rice. Table S24. The stem–loop RT primers used in the present study. (XLSX 1012 kb
- …
