7,958 research outputs found
From Common to Special: When Multi-Attribute Learning Meets Personalized Opinions
Visual attributes, which refer to human-labeled semantic annotations, have
gained increasing popularity in a wide range of real world applications.
Generally, the existing attribute learning methods fall into two categories:
one focuses on learning user-specific labels separately for different
attributes, while the other one focuses on learning crowd-sourced global labels
jointly for multiple attributes. However, both categories ignore the joint
effect of the two mentioned factors: the personal diversity with respect to the
global consensus; and the intrinsic correlation among multiple attributes. To
overcome this challenge, we propose a novel model to learn user-specific
predictors across multiple attributes. In our proposed model, the diversity of
personalized opinions and the intrinsic relationship among multiple attributes
are unified in a common-to-special manner. To this end, we adopt a
three-component decomposition. Specifically, our model integrates a common
cognition factor, an attribute-specific bias factor and a user-specific bias
factor. Meanwhile Lasso and group Lasso penalties are adopted to leverage
efficient feature selection. Furthermore, theoretical analysis is conducted to
show that our proposed method could reach reasonable performance. Eventually,
the empirical study carried out in this paper demonstrates the effectiveness of
our proposed method
Exact Controllability of Linear Stochastic Differential Equations and Related Problems
A notion of -exact controllability is introduced for linear controlled
(forward) stochastic differential equations, for which several sufficient
conditions are established. Further, it is proved that the -exact
controllability, the validity of an observability inequality for the adjoint
equation, the solvability of an optimization problem, and the solvability of an
-type norm optimal control problem are all equivalent
Optimizing Urban Distribution Routes for Perishable Foods Considering Carbon Emission Reduction
The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the base of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution route with and without carbon emissions cost are constructed, and fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, the path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit
- …
