55,567 research outputs found

    Progressive Label Distillation: Learning Input-Efficient Deep Neural Networks

    Get PDF
    Much of the focus in the area of knowledge distillation has been on distilling knowledge from a larger teacher network to a smaller student network. However, there has been little research on how the concept of distillation can be leveraged to distill the knowledge encapsulated in the training data itself into a reduced form. In this study, we explore the concept of progressive label distillation, where we leverage a series of teacher-student network pairs to progressively generate distilled training data for learning deep neural networks with greatly reduced input dimensions. To investigate the efficacy of the proposed progressive label distillation approach, we experimented with learning a deep limited vocabulary speech recognition network based on generated 500ms input utterances distilled progressively from 1000ms source training data, and demonstrated a significant increase in test accuracy of almost 78% compared to direct learning.Comment: 9 page

    Quantum measurement in two-dimensional conformal field theories: Application to quantum energy teleportation

    Get PDF
    We construct a set of quasi-local measurement operators in 2D CFT, and then use them to proceed the quantum energy teleportation (QET) protocol and show it is viable. These measurement operators are constructed out of the projectors constructed from shadow operators, but further acting on the product of two spatially separated primary fields. They are equivalently the OPE blocks in the large central charge limit up to some UV-cutoff dependent normalization but the associated probabilities of outcomes are UV-cutoff independent. We then adopt these quantum measurement operators to show that the QET protocol is viable in general. We also check the CHSH inequality a la OPE blocks.Comment: match the version published on PLB, the main conclusion didn't change, some techincal details can be found in the previous versio

    Glider: A GPU Library Driver for Improved System Security

    Full text link
    Legacy device drivers implement both device resource management and isolation. This results in a large code base with a wide high-level interface making the driver vulnerable to security attacks. This is particularly problematic for increasingly popular accelerators like GPUs that have large, complex drivers. We solve this problem with library drivers, a new driver architecture. A library driver implements resource management as an untrusted library in the application process address space, and implements isolation as a kernel module that is smaller and has a narrower lower-level interface (i.e., closer to hardware) than a legacy driver. We articulate a set of device and platform hardware properties that are required to retrofit a legacy driver into a library driver. To demonstrate the feasibility and superiority of library drivers, we present Glider, a library driver implementation for two GPUs of popular brands, Radeon and Intel. Glider reduces the TCB size and attack surface by about 35% and 84% respectively for a Radeon HD 6450 GPU and by about 38% and 90% respectively for an Intel Ivy Bridge GPU. Moreover, it incurs no performance cost. Indeed, Glider outperforms a legacy driver for applications requiring intensive interactions with the device driver, such as applications using the OpenGL immediate mode API
    corecore