30,927 research outputs found
The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers
The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and
11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH)
molecules, have been recently ascribed to mixed aromatic/aliphatic organic
nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction
(i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers
based on the observed intensities of the 3.4 and 3.3 micrometer emission
features by attributing them to aliphatic and aromatic C-H stretching modes,
respectively, and assuming A_34./A_3.3~0.68 derived from a small set of
aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the
band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H
bonds.
To improve the estimate of the aliphatic fraction of the UIE carriers, here
we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H
features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4
micrometer feature to that from the 3.3 micrometer feature. We derive the
median ratio to be ~ 0.12. We employ density functional theory
and second-order perturbation theory to compute A_3.4/A_3.3 for a range of
methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with
an average ratio of ~1.76. By attributing the 3.4 micrometer
feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity
and superhydrogenation), we derive the fraction of C atoms in aliphatic form to
be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The
Astrophysical Journa
The properties of kaonic nuclei in relativistic mean-field theory
The static properties of some possible light and moderate kaonic nuclei, from
C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state
binding energies of are in the range of MeV and
MeV, respectively. The binding energies of 1p states increase monotonically
with the nucleon number A. The upper limit of the widths are about
MeV for the 1s states, and about MeV for the 1p states. The lower
limit of the widths are about MeV for the 1s states, and
MeV for the 1p states. If MeV, the discrete bound states
should be identified in experiment. The shrinkage effect is found in the
possible kaonic nuclei. The interior nuclear density increases obviously, the
densest center density is about .Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo
On the momentum-dependence of -nuclear potentials
The momentum dependent -nucleus optical potentials are obtained based
on the relativistic mean-field theory. By considering the quarks coordinates of
meson, we introduced a momentum-dependent "form factor" to modify the
coupling vertexes. The parameters in the form factors are determined by fitting
the experimental -nucleus scattering data. It is found that the real
part of the optical potentials decrease with increasing momenta, however
the imaginary potentials increase at first with increasing momenta up to
MeV and then decrease. By comparing the calculated mean
free paths with those from / scattering data, we suggested that the
real potential depth is MeV, and the imaginary potential parameter
is MeV.Comment: 9 pages, 4 figure
A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Angstrom Extinction Bump and Diffuse Interstellar Bands
The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral
features arising from the tenuous material in the space between stars -- the
interstellar medium (ISM). Since their first detection nearly nine decades ago,
over 400 DIBs have been observed in the visible and near-infrared wavelength
range in both the Milky Way and external galaxies, both nearby and distant.
However, the identity of the species responsible for these bands remains as one
of the most enigmatic mysteries in astrophysics.
An equally mysterious interstellar spectral signature is the 2175 Angstrom
extinction bump, the strongest absorption feature observed in the ISM. Its
carrier also remains unclear since its first detection 46 years ago.
Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a
candidate for DIBs as their electronic transitions occur in the wavelength
range where DIBs are often found. In recent years, the 2175 Angstrom extinction
bump is also often attributed to the \pi--\pi* transition in PAHs. If PAHs are
indeed responsible for both the 2175 Angstrom extinction feature and DIBs,
their strengths may correlate.
We perform an extensive literature search for lines of sight for which both
the 2175 Angstrom extinction feature and DIBs have been measured.
Unfortunately, we found no correlation between the strength of the 2175
Angstrom feature and the equivalent widths of the strongest DIBs. A possible
explanation might be that DIBs are produced by small free gas-phase PAH
molecules and ions, while the 2175 Angstrom bump is mainly from large PAHs or
PAH clusters in condensed phase so that there is no tight correlation between
DIBs and the 2175 Angstrom bump.Comment: 45 pages, 3 figures, 4 tables, published in Ap
The Carriers of the "Unidentified" Infrared Emission Features: Clues from Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups
The "unidentified" infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6,
and 11.3 m are ubiquitously seen in various astrophysical regions. The UIE
features are characteristic of the stretching and bending vibrations of
aromatic hydrocarbons. The 3.3 m feature resulting from aromatic C--H
stretches is often accompanied by a weaker feature at 3.4 m often
attributed to aliphatic C--H stretches. The ratio of the observed intensity of
the 3.3 m aromatic C--H feature () to that of the 3.4 m
aliphatic C--H feature () allows one to estimate the aliphatic
fraction (i.e. , the number of C atoms in
aliphatic units to that in aromatic rings) of the UIE carriers, provided the
intrinsic oscillator strengths of the 3.3 m aromatic C--H stretch
() and the 3.4 m aliphatic C--H stretch () are known.
In this article we summarize the computational results on and
and their implications for the aromaticity and aliphaticity of the
UIE carriers. We use density functional theory and second-order perturbation
theory to derive and from the infrared vibrational spectra
of seven PAHs with various aliphatic substituents (e.g., methyl-, dimethyl-,
ethyl-, propyl-, butyl-PAHs, and PAHs with unsaturated alkyl-chains). The mean
band strengths of the aromatic () and aliphatic () C--H
stretches are derived and then employed to estimate the aliphatic fraction of
the UIE carriers by comparing / with /. We
conclude that the UIE emitters are predominantly aromatic, as revealed by the
observationally-derived ratio ~ 0.12 and the
computationally-derived ratio ~ 1.76 which suggest an
upper limit of ~ 0.02 for the aliphatic
fraction of the UIE carriers.Comment: 67 pages, 18 figures, 8 tables; invited article accepted for
publication in "New Astronomy Review"; a considerable fraction of this
article is concerned with the computational techniques and results, readers
who are mainly interested in astrophysics may wish to only read
"Introduction", and "Astrophysical Implications
- …
