3,451 research outputs found
Dynamics of neutrino-driven winds: inclusion of accurate weak interaction rates in strong magnetic fields
Solving Newtonian steady-state wind equations with accurate weak interaction
rates and magnetic fields (MFs) of young neutron stars considered, we study the
dynamics and nucleosynthesis of neutrino-driven winds (NDWs) from proto neutron
stars (PNSs). For a typical 1.4 M PNS model, we find the
nucleosynthesis products are closely related to the luminosity of neutrinos and
anti-neutrinos. The lower the luminosity is, the larger effect to the NDWs
caused by weak interactions and MFs is. At a high anti-neutrino luminosity of
typically erg s, neutrinos and anti-neutrinos dominate
the processes in a NDW and the MFs hardly change the wind's properties. While
at a low anti-neutrino luminosity of erg s at the late stage
of a NDW, the mass of product and nucleosynthesis are changed significantly in
the strong MFs, they are less important than those in the early stage when the
anti-neutrino luminosity is high. Therefore for the most models considered for
the NDWs from PNSs, based on our calculations the influences of MFs and the net
weak interactions on the nucleosynthesis is not significant.Comment: 8 pages, 3 figures, accepted for publication in RA
Predicting the epidemic threshold of the susceptible-infected-recovered model
Researchers have developed several theoretical methods for predicting
epidemic thresholds, including the mean-field like (MFL) method, the quenched
mean-field (QMF) method, and the dynamical message passing (DMP) method. When
these methods are applied to predict epidemic threshold they often produce
differing results and their relative levels of accuracy are still unknown. We
systematically analyze these two issues---relationships among differing results
and levels of accuracy---by studying the susceptible-infected-recovered (SIR)
model on uncorrelated configuration networks and a group of 56 real-world
networks. In uncorrelated configuration networks the MFL and DMP methods yield
identical predictions that are larger and more accurate than the prediction
generated by the QMF method. When compared to the 56 real-world networks, the
epidemic threshold obtained by the DMP method is closer to the actual epidemic
threshold because it incorporates full network topology information and some
dynamical correlations. We find that in some scenarios---such as networks with
positive degree-degree correlations, with an eigenvector localized on the high
-core nodes, or with a high level of clustering---the epidemic threshold
predicted by the MFL method, which uses the degree distribution as the only
input parameter, performs better than the other two methods. We also find that
the performances of the three predictions are irregular versus modularity
The Software Correlator of the Chinese VLBI Network
The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability
Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction
Reconnection of the self-generated magnetic fields in laser-plasma
interaction was first investigated experimentally by Nilson {\it et al.} [Phys.
Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a
solid target layer. An elongated current sheet (CS) was observed in the plasma
between the two laser spots. In order to more closely model magnetotail
reconnection, here two side-by-side thin target layers, instead of a single
one, are used. It is found that at one end of the elongated CS a fan-like
electron outflow region including three well-collimated electron jets appears.
The ( MeV) tail of the jet energy distribution exhibits a power-law
scaling. The enhanced electron acceleration is attributed to the intense
inductive electric field in the narrow electron dominated reconnection region,
as well as additional acceleration as they are trapped inside the rapidly
moving plasmoid formed in and ejected from the CS. The ejection also induces a
secondary CS
Manipulation of Tribological Properties of Metals by Ultrashort Pulsed Laser Micro-/Nanostructuring
Surface texturing as a means for controlling tribological properties of mechanical components is well known for many years. Various technologies have been developed for surface texturing. Among them, ultrashort pulsed laser surface texturing is one of the most promising ways to achieve micromachining in the field of tribological applications. Ultrashort pulsed laser technology can produce various micro-/nanostructures on the material surfaces to modulate their tribological properties. The aim of this chapter is to introduce the recent progress on ultrashort pulsed laser-induced frictional property change of metals and to demonstrate the potential applications of ultrashort pulsed laser-induced frictional property change of metal in various fields
- …
