285 research outputs found
CoMoFusion: Fast and High-quality Fusion of Infrared and Visible Image with Consistency Model
Generative models are widely utilized to model the distribution of fused
images in the field of infrared and visible image fusion. However, current
generative models based fusion methods often suffer from unstable training and
slow inference speed. To tackle this problem, a novel fusion method based on
consistency model is proposed, termed as CoMoFusion, which can generate the
high-quality images and achieve fast image inference speed. In specific, the
consistency model is used to construct multi-modal joint features in the latent
space with the forward and reverse process. Then, the infrared and visible
features extracted by the trained consistency model are fed into fusion module
to generate the final fused image. In order to enhance the texture and salient
information of fused images, a novel loss based on pixel value selection is
also designed. Extensive experiments on public datasets illustrate that our
method obtains the SOTA fusion performance compared with the existing fusion
methods
10 kHz repetition rate picosecond green laser for high-accuracy satellite ranging
Picosecond pulse laser is the main light source for satellite laser ranging. In this paper, a 10 kHz repetition rate picosecond green laser with an average output power of 5.3 W is demonstrated. The laser generates a pulse width of 18.6 ps at a center wavelength of 532.20 nm with a spectral width of .066 nm. The beam quality is well preserved with M2 of 1.1 with the beam divergence measured to be .62 mrad and pointing stability of 7 μrad over 30 min of operation. The laser system was then applied to measure the BeiDou satellite (Compass-I3) and generated a single range accuracy of 3.2 mm, which is the highest reported range accuracy for synchronous orbit satellite laser ranging
Inherent capacity modulation of a linear refrigeration compressor
Conventional refrigeration compressors sized for peak cooling load actually operate at partial load mostly which could cause excessive on-off cycling loss. Linear compressor could overcome this challenge by varying the compressor stroke in response to transient cooling load. The present work establishes a numerical model for the capacity modulation of linear compressor using R134a through changing the input voltage to meet the cooling load. The numerical model contains a linear compressor model (including three sub-models describing the in-cylinder thermodynamic process, the piston mechanical dynamic process and the electrical part behaviour, respectively) and an input voltage modulation loop. Experimental data are collected for the validation of the numerical model. The results show that the capacity modulation, aiming to meet the cooling load within the error of 5%, can be achieved through varying the input voltage while fixing temperatures of heat exchangers. An increased voltage brings increased compressor stroke and mass flow rate in a linear trend with the heat exchanger temperature unchanged. Lower input voltage leads to higher motor efficiency due to lower copper loss. At a fixed condenser temperature and cooling load, the inherent capacity modulation can save energy with evaporator temperature increasing as the power consumption decreases. At condenser temperature of 50 °C, 40 °C and 30 °C, the CoP only changes by 1.5%, 0.9% and 2.7% when the cooling load changes from 100 W to 200 W. The inherent capacity modulation will allow the linear compressor to maintain a high annual efficiency for refrigeration
FOXD1 Promotes Cell Growth and Metastasis by Activation of Vimentin in NSCLC
Background/Aims: Forkhead box D1 (FOXD1) has a well-established role in early embryonic development and organogenesis and functions as an oncogene in several cancers. However, the clinical significance and biological roles of FOXD1 in non-small cell lung cancer (NSCLC) remain largely unknown. Methods: A total of 264 primary NSCLC tissue samples were collected. The expression levels of FOXD1 in these samples were examined by immunohistochemical staining. The expression of FOXD1 was knocked down by lentiviral shRNA. The relative expression of FOXD1 was determined by qRT-PCR, Western blotting and immunofluorescence image. The functional roles of FOXD1 in NSCLC were demonstrated cell viability CCK-8 assay, colony formation, cell invasion and migration assays, and cell apoptosis assay in vitro. In vivo mouse xenograft and metastasis models were used to assess tumorigenicity and metastatic ability. The Chi-square test was used to assess the correlation between FOXD1 expression and the clinicopathological characteristics. Survival curves were estimated by Kaplan-Meier method and compared using the log-rank test. The Cox proportional hazards model was used for univariate and multivariate analyses. Results: We determined that higher levels of FOXD1 were present in NSCLC tissues, especially in metastatic NSCLC tissues. FOXD1 was also higher in all NSCLC cells compared with normal human bronchial epithelial cells. A higher expression level of FOXD1 was associated with malignant behavior and poor prognosis in NSCLC patients. Knockdown of FOXD1 significantly inhibited proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo, and it increased the apoptosis rates of NSCLC cells. Mechanistic analyses revealed that FOXD1 expressed its oncogenic characteristics through activating Vimentin in NSCLC. Multivariate Cox regression analysis indicated that FOXD1 was an independent prognostic factor both for overall survival (OS) and disease-free survival (DFS) in NSCLC patients. Conclusion: Our results indicated that FOXD1 might be involved in the development and progression of NSCLC as an oncogene, and thereby might be a potential therapeutic target for NSCLC patients
Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat
Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6AL⋅6RS can be exploited by wheat breeders as a novel resistance resource
Short-term dietary choline supplementation alters the gut microbiota and liver metabolism of finishing pigs
Choline is an essential nutrient for pig development and plays a role in the animal's growth performance, carcass characteristics, and reproduction aspects in weaned pigs and sows. However, the effect of choline on finishing pigs and its potential regulatory mechanism remains unclear. Here, we feed finishing pigs with 1% of the hydrochloride salt of choline, such as choline chloride (CHC), under a basic diet condition for a short period of time (14 days). A 14-day supplementation of CHC significantly increased final weight and carcass weight while having no effect on carcass length, average backfat, or eye muscle area compared with control pigs. Mechanically, CHC resulted in a significant alteration of gut microbiota composition in finishing pigs and a remarkably increased relative abundance of bacteria contributing to growth performance and health, including Prevotella, Ruminococcaceae, and Eubacterium. In addition, untargeted metabolomics analysis identified 84 differently abundant metabolites in the liver between CHC pigs and control pigs, of which most metabolites were mainly enriched in signaling pathways related to the improvement of growth, development, and health. Notably, there was no significant difference in the ability of oxidative stress resistance between the two groups, although increased bacteria and metabolites keeping balance in reactive oxygen species showed in finishing pigs after CHC supplementation. Taken together, our results suggest that a short-term supplementation of CHC contributes to increased body weight gain and carcass weight of finishing pigs, which may be involved in the regulation of gut microbiota and alterations of liver metabolism, providing new insights into the potential of choline-mediated gut microbiota/metabolites in improving growth performance, carcass characteristics, and health
Laminar flame characteristics of natural gas and dissociated methanol mixtures diluted by nitrogen
The effect of dissociated methanol (H2:CO=2:1 by volume) on laminar burning velocity of natural gas (methane as the main component) was studied by using a constant volume bomb (CVB). Nitrogen, as diluent gas, was added into the natural gas (CH4) - dissociated methanol (DM) mixtures to investigate the dilution effect. Experiments were conducted at initial temperature of 343 K and initial pressure of 0.3 MPa with equivalence ratios from 0.8 to 1.4. Laminar burning velocities were calculated through Schlieren photographs, correlation of in-cylinder pressure data and Chemkin-Pro. Results show an increase in laminar burning velocity with initial temperature and proportion of dissociated methanol but a decrease with initial pressure and proportion of nitrogen. The laminar burning velocities were 25.1 cm/s, 38.7 cm/s and 83.2 cm/s respectively at stoichiometric ratio when the proportions of the dissociated methanol were 0%, 40% and 80%. Adding more dissociated methanol tends to shift the peak burning velocity towards the richer side while adding nitrogen has the opposite effect. More dissociated methanol will lead to earlier cellularity
Effects of dietary L-Citrulline supplementation on growth performance, meat quality, and fecal microbial composition in finishing pigs
Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss (p < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota
Roadmap on Data-Centric Materials Science
Science is and always has been based on data, but the terms "data-centric"
and the "4th paradigm of" materials research indicate a radical change in how
information is retrieved, handled and research is performed. It signifies a
transformative shift towards managing vast data collections, digital
repositories, and innovative data analytics methods. The integration of
Artificial Intelligence (AI) and its subset Machine Learning (ML), has become
pivotal in addressing all these challenges. This Roadmap on Data-Centric
Materials Science explores fundamental concepts and methodologies, illustrating
diverse applications in electronic-structure theory, soft matter theory,
microstructure research, and experimental techniques like photoemission, atom
probe tomography, and electron microscopy. While the roadmap delves into
specific areas within the broad interdisciplinary field of materials science,
the provided examples elucidate key concepts applicable to a wider range of
topics. The discussed instances offer insights into addressing the multifaceted
challenges encountered in contemporary materials research.Comment: Review, outlook, roadmap, perspectiv
- …
