502 research outputs found
Tensor-based Intrinsic Subspace Representation Learning for Multi-view Clustering
As a hot research topic, many multi-view clustering approaches are proposed
over the past few years. Nevertheless, most existing algorithms merely take the
consensus information among different views into consideration for clustering.
Actually, it may hinder the multi-view clustering performance in real-life
applications, since different views usually contain diverse statistic
properties. To address this problem, we propose a novel Tensor-based Intrinsic
Subspace Representation Learning (TISRL) for multi-view clustering in this
paper. Concretely, the rank preserving decomposition is proposed firstly to
effectively deal with the diverse statistic information contained in different
views. Then, to achieve the intrinsic subspace representation, the
tensor-singular value decomposition based low-rank tensor constraint is also
utilized in our method. It can be seen that specific information contained in
different views is fully investigated by the rank preserving decomposition, and
the high-order correlations of multi-view data are also mined by the low-rank
tensor constraint. The objective function can be optimized by an augmented
Lagrangian multiplier based alternating direction minimization algorithm.
Experimental results on nine common used real-world multi-view datasets
illustrate the superiority of TISRL
- …
