11,397 research outputs found
Recommended from our members
In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation.
Regulatory T cells (Tregs) have been shown to be critical in the balance between autoimmunity and tolerance and have been implicated in several human autoimmune diseases. However, the small number of Tregs in peripheral blood limits their therapeutic potential. Therefore, we developed a protocol that would allow for the expansion of Tregs while retaining their suppressive activity. We isolated CD4+CD25 hi cells from human peripheral blood and expanded them in vitro in the presence of anti-CD3 and anti-CD28 magnetic Xcyte Dynabeads and high concentrations of exogenous Interleukin (IL)-2. Tregs were effectively expanded up to 200-fold while maintaining surface expression of CD25 and other markers of Tregs: CD62L, HLA-DR, CCR6, and FOXP3. The expanded Tregs suppressed proliferation and cytokine secretion of responder PBMCs in co-cultures stimulated with anti-CD3 or alloantigen. Treg expansion is a critical first step before consideration of Tregs as a therapeutic intervention in patients with autoimmune or graft-versus-host disease
Implementation of real-time parallel processing in a motion control system
The paper proposes an architecture and implementation of a motion control system, with a master-slave multiprocessor mode. Some major problems which must be considered in multiprocessor systems design, including multiprocessor system architecture, interconnection network, hardware circuit design and software design are studied.published_or_final_versio
Optimal-efficiency control for constant-power operation of phase-decoupling permanent-magnet brushless motor drives
In this paper, a control approach to optimize the system efficiency of phase-decoupling (PD) permanent-magnet (PM) brushless motor drives during constant-power operation is presented. The approach is to adaptively adjust the advanced conduction angle to minimize the total system losses for a given operation point in the constant-power region. The corresponding minimum total losses are determined by minimizing the input current for a fixed voltage source. Both computer simulation and experimental results are given for illustration.published_or_final_versio
Dual Identities inside the Gluon and the Graviton Scattering Amplitudes
Recently, Bern, Carrasco and Johansson conjectured dual identities inside the
gluon tree scattering amplitudes. In this paper, we use the properties of the
heterotic string and open string tree scattering amplitudes to refine and
derive these dual identities. These identities can be carried over to loop
amplitudes using the unitarity method. Furthermore, given the -gluon (as
well as gluon-gluino) tree amplitudes, -graviton (as well as
graviton-gravitino) tree scattering amplitudes can be written down immediately,
avoiding the derivation of Feynman rules and the evaluation of Feynman diagrams
for graviton scattering amplitudes.Comment: 43 pages, 3 figures; typos corrected, a few points clarified
Permanent magnet brushless drives
The purpose of this paper is to present an optimal efficiency control scheme for constant power operation of phase decoupling (PD) PM brushless DC motor drives. The key is to adaptively adjust the advanced conduction angle to minimize the system losses for a given operation point in the constant power region. The strategy for constant power operation of PD PM brushless DC motor drives is exemplified using a 5-phase 22-pole PD PM brushless DC motor. In the sections that follow, the newly-developed optimal efficiency control technique is then illustrated. Then, after describing the corresponding implementation, both computer simulation and experimental results are presented, and some conclusions are offered.published_or_final_versio
On bulk singularities in the random normal matrix model
We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to
study the distribution of eigenvalues close to a bulk singularity, i.e. a point
in the interior of the droplet where the density of the classical equilibrium
measure vanishes. We prove results to the effect that a certain "dominant part"
of the Taylor expansion determines the microscopic properties near a bulk
singularity. A description of the distribution is given in terms of a special
entire function, which depends on the nature of the singularity (a
Mittag-Leffler function in the case of a rotationally symmetric singularity).Comment: This version clarifies on the proof of Theorem
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Refractive-index sensing with ultra-thin plasmonic nanotubes
We study the refractive-index sensing properties of plasmonic nanotubes with
a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is
described by both the usual Drude model and the nonlocal hydrodynamic model to
investigate the effects of nonlocality. We derive an analytical expression for
the extinction cross section and show how sensing of the refractive index of
the surrounding medium and the figure-of-merit are affected by the shape and
size of the nanotubes. Comparison with other localized surface plasmon
resonance sensors reveals that the nanotube exhibits superior sensitivity and
comparable figure-of-merit
Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo
Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC
The LHC is well on track toward the discovery or exclusion of a light
Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width
and can easily have large branching fractions to physics beyond the SM, making
Higgs decays an excellent opportunity to observe new physics. Decays into
collider-invisible particles are particularly interesting as they are
theoretically well motivated and relatively clean experimentally. In this work
we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs
branching fraction. We analyze three channels that can be used to directly
study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs
produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii)
forward tagging jets. We find that the last channel, where the Higgs is
produced via weak boson fusion, is the most sensitive, allowing branching
fractions as small as 40% to be probed at 20 inverse fb for masses in the range
between 120 and 170 GeV, including in particular the interesting region around
125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an
invisibly-decaying Higgs produced via weak boson fusion and find that the reach
is comparable to but not better than the reach at the 7 TeV LHC. We further
estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has
substantial branching fractions to both visible and invisible final states.Comment: 23 pages, 7 figures. v2: version published in JHEP. 8 TeV analysis
adde
- …
