2,885 research outputs found

    Color Superconductivity at Moderate Density

    Get PDF
    The effect of color breaking on colored quarks' chiral condensates has been investigated at zero temperature and moderate baryon density. It is found that the influence of the diquark condensate on different colored quarks is very small.Comment: 4 pages, 1 figure in eps, talk given at XXXI International Symposium on Multiparticle Dynamics, Sept 1-7, 2001, Datong China. See http://ismd31.ccnu.edu.cn

    Synthetic Topological Degeneracy by Anyon Condensation

    Full text link
    Topological degeneracy is the degeneracy of the ground states in a many-body system in the large-system-size limit. Topological degeneracy cannot be lifted by any local perturbation of the Hamiltonian. The topological degeneracies on closed manifolds have been used to discover/define topological order in many-body systems, which contain excitations with fractional statistics. In this paper, we study a new type of topological degeneracy induced by condensing anyons along a line in 2D topological ordered states. Such topological degeneracy can be viewed as carried by each end of the line-defect, which is a generalization of Majorana zero-modes. The topological degeneracy can be used as a quantum memory. The ends of line-defects carry projective non-Abelian statistics, and braiding them allow us to perform fault tolerant quantum computations.Comment: 4 pages + references + 3 pages of supplementary material, 2 figures. reference update

    A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage

    Get PDF
    Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared
    corecore