6,581 research outputs found

    Why torus-unstable solar filaments experience failed eruption?

    Get PDF
    To investigate the factors that control the success and/or failure of solar eruptions, we study the magnetic field and 3-Dimensional (3D) configuration of 16 filament eruptions during 2010 July - 2013 February. All these events, i.e., erupted but failed to be ejected to become a coronal mass ejection (CME), are failed eruptions with the filament maximum height exceeding 100Mm100 Mm. The magnetic field of filament source regions is approximated by a potential field extrapolation method. The filament 3D configuration is reconstructed from three vantage points by the observations of STEREO Ahead/Behind and SDO spacecraft. We calculate the decay index at the apex of these failed filaments and find that in 7 cases, their apex decay indexes exceed the theoretical threshold (ncrit=1.5n_{crit} = 1.5) of the torus instability. We further determine the orientation change or rotation angle of each filament top during the eruption. Finally, the distribution of these events in the parameter space of rotation angle versus decay index is established. Four distinct regimes in the parameter space are empirically identified. We find that, all the torus-unstable cases (decay index n>1.5n > 1.5), have a large rotation angles ranging from 5013050^\circ - 130^\circ. The possible mechanisms leading to the rotation and failed eruption are discussed. These results imply that, besides the torus instability, the rotation motion during the eruption may also play a significant role in solar eruptions

    What do seller manipulations of online product reviews mean to consumers?

    Full text link
    There is growing evidence that consumers are influenced by online product reviews when making a variety of purchase decisions. Firms are therefore tempted to monitor and manipulate online product reviews on the company\u27s website or forum to influence consumer perceptions by anonymously posting positive reviews, hiding or deleting unfavorable reviews, or offering rewards to consumers who post favorable reviews. Our review of the literature has revealed a surprising shortage of work directed at the development of an integrative theoretical framework or rigorous empirical studies on the effectiveness and the exact impact of such activities on the payoffs to various parties. This study fills a void in the online marketing and information manipulation literature by studying consumers\u27 suspicion, awareness and evaluation of specific manipulation tactics through in-depth interviews with 16 experienced online shoppers in China. We adopt a grounded theory approach to analyze the qualitative data and end up with a series of research propositions (research framework) for further testing and verification. The findings about consumers\u27 views of online manipulations would provide valuable insights to industry associations and policy makers on whether and how to regulate online manipulation activities to ensure the healthy development of the e-commerce

    Wave Function Engineering for Spectrally-Uncorrelated Biphotons in the Telecommunication Band based on a Machine-Learning Framework

    Full text link
    Indistinguishable single photons are key ingredient for a plethora of quantum information processing applications ranging from quantum communications to photonic quantum computing. A mainstream platform to produce indistinguishable single photons over a wide spectral range is based on biphoton generation through spontaneous parametric down-conversion (SPDC) in nonlinear crystals. The purity of the SPDC biphotons, however, is limited by their spectral correlations. Here, we present a design recipe, based on a machine-learning framework, for the engineering of biphoton joint spectrum amplitudes over a wide spectral range. By customizing the poling profile of the KTiOPO4_4 (KTP) crystal, we show, numerically, that spectral purities of 99.22%, 99.99%, and 99.82% can be achieved, respectively, in the 1310-nm, 1550-nm, and 1600-nm bands after applying a moderate 8-nm filter. The machine-learning framework thus enables the generation of near-indistinguishable single photons over the entire telecommunication band without resorting to KTP crystal's group-velocity-matching wavelength window near 1582 nm

    Anomalous Tail Effect on Resistivity Transition and Weak-link Behavior of Iron Based Superconductor

    Full text link
    Temperature dependent resistivity of the iron-based superconductor NdFeAsO0.88F0.12 was measured under different applied fields and excitation currents. Arrhenius plot shows an anomalous tail effect, which contains obvious two resistivity dropping stages. The first is caused by the normal superconducting transition, and the second is supposed to be related to the weak-link between the grains. A model for the resistivity dropping related to the weak-link behavior is proposed, which is based on the Josephson junctions formed by the impurities in grain boundaries like FeAs, Sm2O3 and cracks together with the adjacent grains. These Josephson junctions can be easily broken by the applied fields and the excitations currents, leading to the anomalous resistivity tail in many polycrystalline iron-based superconductors. The calculated resistivity dropping agrees well with the experimental data, which manifests the correctness of the explanation of the obtained anomalous tail effect.Comment: 9 pages, 4 figure

    A fractional slot multiphase air-core compulsator with concentrated winding

    Get PDF
    Compulsator is a specially designed generator capa¬ble of delivering high current pulses to a low-impedance load, such as the electromagnetic railgun. In order to increase the tip speed of the rotor, advanced composite materials have been used in the recent compulsator prototype, which is mentioned as air core instead of the traditional iron core. For typical air-core compulsators, there are no slots and steel teeth to place the armature windings due to the nonmachinability of composite materials. Therefore, concentric windings in racetrack style are often adopted instead of traditional lap winding in most cases, since it is more convenient to be fixed by composite materials. However, overlap occurs at the end winding part for multiphase compulsators, which are not easy to be formed during the manufacture process. In this paper, a fractional slot multiphase air-core compulsator with concentrated windings is proposed and analyzed. The main advantage of fractional slot configuration is that it can offer a concentrated winding structure under certain conditions, which means each coil only spans one “tooth,” and will not cause any intersection between each phase at the end winding. Two referenced fractional slot air-core compulsators with two phases, six poles, and four “slots” or eight “slots” (q = 1/3 and q = 2/3, q is the “slot” per pole per phase) are analyzed and compared with the performance of a traditional integral slot machine. The results indicated that the output voltage and self-excitation performance of a fractional slot compulsator can reach the same level with an integral slot one, and the discharging performance can reach an acceptable level. Thus, the fractional slot multiphase concept can be further used to improve the manufacture process of the winding in the future
    corecore