7,186 research outputs found
Finite closed coverings of compact quantum spaces
We show that a projective space P^\infty(Z/2) endowed with the Alexandrov
topology is a classifying space for finite closed coverings of compact quantum
spaces in the sense that any such a covering is functorially equivalent to a
sheaf over this projective space. In technical terms, we prove that the
category of finitely supported flabby sheaves of algebras is equivalent to the
category of algebras with a finite set of ideals that intersect to zero and
generate a distributive lattice. In particular, the Gelfand transform allows us
to view finite closed coverings of compact Hausdorff spaces as flabby sheaves
of commutative C*-algebras over P^\infty(Z/2).Comment: 26 pages, the Teoplitz quantum projective space removed to another
paper. This is the third version which differs from the second one by fine
tuning and removal of typo
- …
