275 research outputs found

    Integration of 'omics' data in aging research: from biomarkers to systems biology

    Get PDF
    Age is the strongest risk factor for many diseases including neurodegenerative disorders, coronary heart disease, type 2 diabetes and cancer. Due to increasing life expectancy and low birth rates, the incidence of age-related diseases is increasing in industrialized countries. Therefore, understanding the relationship between diseases and aging and facilitating healthy aging are major goals in medical research. In the last decades, the dimension of biological data has drastically increased with high-throughput technologies now measuring thousands of (epi) genetic, expression and metabolic variables. The most common and so far successful approach to the analysis of these data is the so-called reductionist approach. It consists of separately testing each variable for association with the phenotype of interest such as age or age-related disease. However, a large portion of the observed phenotypic variance remains unexplained and a comprehensive understanding of most complex phenotypes is lacking. Systems biology aims to integrate data from different experiments to gain an understanding of the system as a whole rather than focusing on individual factors. It thus allows deeper insights into the mechanisms of complex traits, which are caused by the joint influence of several, interacting changes in the biological system. In this review, we look at the current progress of applying omics technologies to identify biomarkers of aging. We then survey existing systems biology approaches that allow for an integration of different types of data and highlight the need for further developments in this area to improve epidemiologic investigations

    Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1

    Get PDF
    Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90

    Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model

    Get PDF
    Although association studies have unveiled numerous correlations of biochemical markers with age and age-related diseases, we still lack an understanding of their mutual dependencies. To find molecular pathways that underlie age-related diseases as well as their comorbidities, we integrated aging markers from four different high-throughput omics datasets, namely epigenomics, transcriptomics, glycomics and metabolomics, with a comprehensive set of disease phenotypes from 510 participants of the TwinsUK cohort. We used graphical random forests to assess conditional dependencies between omics markers and phenotypes while eliminating mediated associations. Applying this novel approach for multi-omics data integration yields a model consisting of seven modules that represent distinct aspects of aging. These modules are connected by hubs that potentially trigger comorbidities of age-related diseases. As an example, we identified urate as one of these key players mediating the comorbidity of renal disease with body composition and obesity. Body composition variables are in turn associated with inflammatory IgG markers, mediated by the expression of the hormone oxytocin. Thus, oxytocin potentially contributes to the development of chronic low-grade inflammation, which often accompanies obesity. Our multi-omics graphical model demonstrates the interconnectivity of age-related diseases and highlights molecular markers of the aging process that might drive disease comorbidities

    Circulating glucuronic acid predicts healthspan and longevity in humans and mice

    Get PDF
    Glucuronic acid is a metabolite of glucose that is involved in the detoxification of xenobiotic compounds and the structure/remodeling of the extracellular matrix. We report for the first time that circulating glucuronic acid is a robust biomarker of mortality that is conserved across species. We find that glucuronic acid levels are significant predictors of all-cause mortality in three population-based cohorts from different countries with 420 years of follow-up (HR=1.44, p=2.9x10(-6) in the discovery cohort; HR=1.13, p=0.032 and HR=1.25, p=0.017, respectively in the replication cohorts), as well as in a longitudinal study of genetically heterogenous mice (HR=1.29, p=0.018). Additionally, we find that glucuronic acid levels increase with age and predict future healthspan-related outcomes. Together, these results demonstrate glucuronic acid as a robust biomarker of longevity and healthspan

    Detection of stable community structures within gut microbiota co-occurrence networks from different human populations

    Get PDF
    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses

    Metabolomic profiling identifies novel associations with Electrolyte and Acid-Base Homeostatic patterns

    Get PDF
    Electrolytes have a crucial role in maintaining health and their serum levels are homeostatically maintained within a narrow range by multiple pathways involving the kidneys. Here we use metabolomics profiling (592 fasting serum metabolites) to identify molecular markers and pathways associated with serum electrolyte levels in two independent population-based cohorts. We included 1523 adults from TwinsUK not on blood pressure-lowering therapy and without renal impairment to look for metabolites associated with chloride, sodium, potassium and bicarbonate by running linear mixed models adjusting for covariates and multiple comparisons. For each electrolyte, we further performed pathway enrichment analysis (PAGE algorithm). Results were replicated in an independent cohort. Chloride, potassium, bicarbonate and sodium associated with 10, 58, 36 and 17 metabolites respectively (each P < 2.1 x 10(-5)), mainly lipids. Of all the electrolytes, serum potassium showed the most significant associations with individual fatty acid metabolites and specific enrichment of fatty acid pathways. In contrast, serum sodium and bicarbonate showed associations predominantly with amino-acid related species. In the first study to examine systematically associations between serum electrolytes and small circulating molecules, we identified novel metabolites and metabolic pathways associated with serum electrolyte levels. The role of these metabolic pathways on electrolyte homeostasis merits further studies

    Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome

    Get PDF
    Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10-4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health

    Gut microbiota associations with common diseases and prescription medications in a population-based cohort

    Get PDF
    The human gut microbiome has been associated with many health factors but variability between studies limits exploration of effects between them. Gut microbiota profiles are available for >2700 members of the deeply phenotyped TwinsUK cohort, providing a uniform platform for such comparisons. Here, we present gut microbiota association analyses for 38 common diseases and 51 medications within the cohort. We describe several novel associations, highlight associations common across multiple diseases, and determine which diseases and medications have the greatest association with the gut microbiota. These results provide a reference for future studies of the gut microbiome and its role in human health

    Effects of statins on the immunoglobulin G glycome

    Get PDF
    Background Statins are among the most widely prescribed medications worldwide and usually many individuals involved in clinical and population studies are on statin therapy. Immunoglobulin G (IgG) glycosylation has been associated with numerous cardiometabolic risk factors. Methods The aim of this study was to investigate the possible association of statin use with N-glycosylation of IgG. The association was analyzed in two large population cohorts (TwinsUK and KORA) using hydrophilic interaction liquid chromatography (HILIC-UPLC) in the TwinsUK cohort and reverse phase liquid chromatography coupled with electrospray mass spectrometry (LC-ESI-MS) in the KORA cohort. Afterwards we investigated the same association for only one statin (rosuvastatin) in a subset of individuals from the randomized double-blind placebo-controlled JUPITER study using LC-ESI-MS for IgG glycome and HILIC-UPLC for total plasma N-glycome. Results In the TwinsUK population, the use of statins was associated with higher levels of core-fucosylated biantennary glycan structure with bisecting N-acetylglucosamine (FA2B) and lower levels of core-fucosylated biantennary digalactosylated monosialylated glycan structure (FA2G2S1). The association between statin use and FA2B was replicated in the KORA cohort. In the JUPITER trial we found no statistically significant differences between the randomly allocated placebo and rosuvastatin groups. Conclusions In the TwinsUK and KORA cohorts, statin use was associated with a small increase of pro-inflammatory IgG glycan, although this finding was not confirmed in a subset of participants from the JUPITER trial. General significance Even if the association between IgG N-glycome and statins exists, it is not large enough to pose a problem for glycomic studies

    Glycosylation Profile of IgG in Moderate Kidney Dysfunction

    Get PDF
    Glycans constitute the most abundant and diverse formof the post-translational modifications, and animal studies have suggested the involvement of IgG glycosylation in mechanisms of renal damage. Here, we explored the associations between IgG glycans and renal function in 3274 individuals from the TwinsUK registry. We analyzed the correlation between renal function measured as EGFR and 76 N-glycan traits using linear regressions adjusted for covariates and multiple testing in the larger population. We replicated our results in 31 monozygotic twin pairs discordant for renal function. Results from both analyses were then meta-analyzed. Fourteen glycan traits were associated with renal function in the discovery sample (P,6.531024) and remained significant after validation. Those glycan traits belong to three main glycosylation features: galactosylation, sialylation, and level of bisecting N-acetylglucosamine of the IgG glycans. These results show the role of IgG glycosylation in kidney function and provide novel insight into the pathophysiology of CKD and potential diagnostic and therapeutic targets
    corecore