151 research outputs found

    AutoLog: A Log Sequence Synthesis Framework for Anomaly Detection

    Full text link
    The rapid progress of modern computing systems has led to a growing interest in informative run-time logs. Various log-based anomaly detection techniques have been proposed to ensure software reliability. However, their implementation in the industry has been limited due to the lack of high-quality public log resources as training datasets. While some log datasets are available for anomaly detection, they suffer from limitations in (1) comprehensiveness of log events; (2) scalability over diverse systems; and (3) flexibility of log utility. To address these limitations, we propose AutoLog, the first automated log generation methodology for anomaly detection. AutoLog uses program analysis to generate run-time log sequences without actually running the system. AutoLog starts with probing comprehensive logging statements associated with the call graphs of an application. Then, it constructs execution graphs for each method after pruning the call graphs to find log-related execution paths in a scalable manner. Finally, AutoLog propagates the anomaly label to each acquired execution path based on human knowledge. It generates flexible log sequences by walking along the log execution paths with controllable parameters. Experiments on 50 popular Java projects show that AutoLog acquires significantly more (9x-58x) log events than existing log datasets from the same system, and generates log messages much faster (15x) with a single machine than existing passive data collection approaches. We hope AutoLog can facilitate the benchmarking and adoption of automated log analysis techniques.Comment: The paper has been accepted by ASE 2023 (Research Track

    Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models

    Get PDF
    Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promising approach to treat DMD and related muscle diseases

    A new species of forest hedgehog (Mesechinus, Erinaceidae, Eulipotyphla, Mammalia) from eastern China

    Get PDF
    The hedgehog genus Mesechinus (Erinaceidae, Eulipotyphla) is currently comprised of four species, M. dauuricus, M. hughi, M. miodon, and M. wangi. Except for M. wangi, which is found in southwestern China, the other three species are mainly distributed in northern China and adjacent Mongolia and Russia. From 2018 to 2023, we collected seven Mesechinus specimens from Anhui and Zhejiang provinces, eastern China. Here, we evaluate the taxonomic and phylogenetic status of these specimens by integrating molecular, morphometric, and karyotypic approaches. Our results indicate that the Anhui and Zhejiang specimens are distinct from the four previously recognized species and are a new species. We formally described it here as Mesechinus orientalis sp. nov. It is the only Mesechinus species occurring in eastern China and is geographically distant from all known congeners. Morphologically, the new species is most similar to M. hughi, but it is distinguishable from that species by the combination of its smaller size, shorter spines, and several cranial characteristics. Mesechinus orientalis sp. nov. is a sister to the lineage composed of M. hughi and M. wangi from which it diverged approximately 1.10 Ma

    OswaldHe/LevelST: Update README

    No full text
    Source code and bitstream for LevelST: Stream-based Accelerator for Sparse Triangular Solve

    OswaldHe/LevelST: First Release

    No full text
    Source code and bitstring for LevelST: Stream-based Accelerator for Sparse Triangular Solve
    corecore