37 research outputs found

    The dual nature of trehalose in citrus canker disease: A virulence factor for Xanthomonas citri subsp. citri and a trigger for plant defence responses

    Get PDF
    Xanthomonas citri subsp. citri (Xcc) is a bacterial pathogen that causes citrus canker in susceptible Citrus spp. The Xcc genome contains genes encoding enzymes from three separate pathways of trehalose biosynthesis. Expression of genes encoding trehalose-6-phosphate synthase (otsA) and trehalose phosphatase (otsB) was highly induced during canker development, suggesting that the two-step pathway of trehalose biosynthesis via trehalose-6-phosphate has a function in pathogenesis. This pathway was eliminated from the bacterium by deletion of the otsA gene. The resulting XccΔotsA mutant produced less trehalose than the wild-type strain, was less resistant to salt and oxidative stresses, and was less able to colonize plant tissues. Gene expression and proteomic analyses of infected leaves showed that infection with XccΔotsA triggered only weak defence responses in the plant compared with infection with Xcc, and had less impact on the host plant's metabolism than the wild-type strain. These results suggested that trehalose of bacterial origin, synthesized via the otsA-otsB pathway, in Xcc, plays a role in modifying the host plant's metabolism to its own advantage but is also perceived by the plant as a sign of pathogen attack. Thus, trehalose biosynthesis has both positive and negative consequences for Xcc. On the one hand, it enables this bacterial pathogen to survive in the inhospitable environment of the leaf surface before infection and exploit the host plant's resources after infection, but on the other hand, it is a tell-tale sign of the pathogen's presence that triggers the plant to defend itself against infection.Fil: Piazza, Ainelén Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ficarra, Florencia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Thomas, Ludivine. King Abdullah University of Science and Technology; Arabia SauditaFil: Marondedze, Claudius. King Abdullah University of Science and Technology; Arabia SauditaFil: Feil, Regina. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Lunn, John E.. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Gehring, Chris. King Abdullah University of Science and Technology; Arabia SauditaFil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics

    Get PDF
    Background: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a equirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are downregulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.Fil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Thomas; Ludivine. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Marondedze, Claudius. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Gehring, Chris. Division of Biological and Environmental Sciences and Engineering. King Abdullah University of Science and Technology; Arabia Saudita;Fil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina;Fil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; Argentina

    The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    Get PDF
    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.Fil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Thomas, Ludivine. King Abdullah University Of Science And Technology;Fil: Marondedze, Claudius. King Abdullah University Of Science And Technology;Fil: Sgro, Germán Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Garofalo, Cecilia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ficarra, Florencia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gehring, Chris. King Abdullah University Of Science And Technology;Fil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentin

    A importância dos jogos e brincadeiras na educação infantil nas instituições filantrópicas de Barretos

    Get PDF
    Monografia (graduação)—Universidade de Brasília, Universidade Aberta do Brasil, Curso de Graduação a Distância em Educação Física, 2012.O presente estudo tem como finalidade apresentar uma reflexão sobre a importância dos jogos e brincadeiras como facilitador da aprendizagem na sala de aula e para o desenvolvimento integral das crianças as quais frequentam uma instituição da cidade de Barretos. Nesse sentido o principal objetivo é compreender a importância das brincadeiras para o desenvolvimento e aprendizagem das crianças inseridas nas escolas de educação infantil, tendo como referência as brincadeiras desenvolvidas em contexto escolar. Como metodologia foi utilizada a pesquisa qualitativa onde os resultados apresentados foram através das observações e questionário direcionado as professoras a fim de conseguir informações necessárias para saber se os jogos e brincadeiras estão sendo propostos como ferramentas educacionais. Após as análises foi possível perceber que o processo educativo visa à melhoria da criança, porém a inserção dos jogos e brincadeiras ainda está oculta para algumas professoras mesmo que essas sabem ou ouviram falar da importância dos jogos e brincadeiras para o desenvolvimento cognitivo da criança

    Unraveling Plant Responses to Bacterial Pathogens through Proteomics

    Get PDF
    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens

    Functional Amyloid and Other Protein Fibers in the Biofilm Matrix

    Get PDF
    Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.</p

    A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of <it>XacPNP </it>is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival.</p> <p>Results</p> <p>Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 α subunit, maturase K, and α- and β-tubulin.</p> <p>Conclusions</p> <p>We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.</p

    Geochemical and Nd-Pb isotopic systematics of late Archean granitoids, southwestern Slave Province, Canada: constraints for granitoid origin and crustal isotopic structure

    Full text link
    New geochemical and Nd-Pb isotopic data for ~ 2.62-2.59 Ga granitoids from the southwest Slave Province are used to determine the source(s) of granitoid magmas, to evaluate the role of pre-2.8 Ga basement during this magmatism, and to refine the existing Nd-Pb isotopic structure of the western Slave Province. The Pb isotopic data require crust older than ~3.2 Ga as a granitoid protolith, whereas the Nd isotopic data require input from juvenile crustal material. This discrepancy is explained if the granitoid protoliths are mixtures of ancient basement and ~2.7 Ga juvenile crust in varying proportions. Specifically, granitoids from the southwestern Slave Province require 10-30% basement, whereas granitoids from other parts of the western Slave Province require &gt;50%. Incorporation of basement as a protolith may be achieved indirectly, by assimilation of basement during juvenile ~2.7 Ga magmatism, or directly during ~2.62-2.59 Ga magmatism. The granitoid isotopic data suggest that indirect basement input was important on a regional scale, but direct input may have also taken place in some areas of the western Slave Province, particularly along the ~111°W "isotopic boundary" zone previously recognized. The geochemical characteristics of these granitoids are compatible with an origin by partial melting of dominantly amphibolite and metasedimentary rocks to produce the ~2.61 Ga and ~2.59 Ga magmatism, respectively; partial melting occurred in response to regional crustal thickening at this time. </jats:p
    corecore