4,458 research outputs found

    Coherence of Currents in Mesoscopic Cylinders

    Full text link
    The persistent currents driven by the pure Aharonov-Bohm type magnetic field in mesoscopic normal metal or semiconducting cylinders are studied. A two-dimensional (2D) Fermi surfaces are characterized by four parameters. Several conditions for the coherence and enhancement of currents are discussed. These results are then generalized to a three-dimensional (3D) thin-walled cylinder to show that under certain geometric conditions on the Fermi surface, a novel effect - the appearance of spontaneous currents is predicted.Comment: 17 pages, Latex, 8 figures available on request, to be published in Z.Physik

    The Two-fluid Description of a Mesoscopic Cylinder

    Full text link
    Quantum coherence of electrons interacting via the magnetostatic coupling and confined to a mesoscopic cylinder is discussed. The electromagnetic response of a system is studied. It is shown that the electromagnetic kernel has finite low frequency limit what implies infinite conductivity. It means that part of the electrons is in a coherent state and the system can be in general described by a two-fluid model. The coherent behavior is determind by the interplay between finite size effects and the correlations coming from the magnetostatic interactions (the interaction is considered in the mean field approximation). The related persistent currents depend on the geometry of the Fermi Surface. If the Fermi Surface has some flat portions the self-sustaining currents can be obtained. The relation of the quantum coherent state in mesoscopic cylinders to other coherent phenomena is discussed.Comment: 21 pages, Latex, 4 figures, in print in Eur. Phys. J. B (Z. Phys. B

    Entanglement swapping between electromagnetic field modes and matter qubits

    Full text link
    Scalable quantum networks require the capability to create, store and distribute entanglement among distant nodes (atoms, trapped ions, charge and spin qubits built on quantum dots, etc.) by means of photonic channels. We show how the entanglement between qubits and electromagnetic field modes allows generation of entangled states of remotely located qubits. We present analytical calculations of linear entropy and the density matrix for the entangled qubits for the system described by the Jaynes-Cummings model. We also discuss the influence of decoherence. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing

    Orbital magnetic moments in pure and doped carbon nanotubes

    Full text link
    The unusual band structure of carbon nanotubes (CNs) results in their remarkable magnetic properties. The application of magnetic field parallel to the tube axis can change the conducting properties of the CN from metallic to semiconducting and vice versa. Apart from that B induces (via the Bohm-Aharonov effect) orbital magnetic moments μorb\mu_{orb} in the nanotube. These moments are studied both in pure and hole- or electron-doped CNs, isolated or in a circuit. Remarkably, μorb\mu_{orb} in pure CNs depends uniquely on their original conducting properties, length, and temperature, but it does not depend on the nanotube radius or the particular chirality. In doped nanotubes the magnetic moments can be strongly altered and depend on the radius and chirality.Temperature can even change their character from diamagnetic at low T to paramagnetic at high T. A full electron-hole symmetry in doped tubes is also revealed.Comment: 10 pages, 11 figures, submitted to Phys. Rev.

    Air traffic control surveillance accuracy and update rate study

    Get PDF
    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely

    Entanglement of flux qubits through a joint detection of photons

    Full text link
    We study the entanglement creation between two flux qubits interacting with electromagnetic field modes. No direct interaction between the qubits exists. Entanglement is reached using entanglement swapping method by an interference measurement performed on photons. We discuss the influence of off-resonance and multi-photon initial states on the qubit-qubit entanglement. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing.Comment: 4 pages, 5 figure

    Flux-biased mesoscopic rings

    Full text link
    Kinetics of magnetic flux in a thin mesoscopic ring biased by a strong external magnetic field is described equivalently by dynamics of a Brownian particle in a tilted washboard potential. The 'flux velocity', i.e. the averaged time derivative of the total magnetic flux in the ring, is a candidate for a novel characteristics of mesoscopic rings. Its global properties reflect the possibility of accommodating persistent currents in the ring.Comment: 7 pages, 4 figures, Presented at the XXII International Conference of Theoretical Physics - Electron Correlations in Nano- and Macrosystems, 9 - 14 September 2006, Ustron, Poland; phys. stat. sol. (b) (in press) (2007

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro

    Quantum gambling using mesoscopic ring qubits

    Get PDF
    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.Comment: 4 pages, 1 figure, poster during XXX Intern. Conf. of Theoretical Physics, Electron correlations in nano- and microsystems, Ustron 9-14 September 2006. Minor corrections, references added; to appear in physica status solidi

    Orbital Magnetic Ordering in Disordered Mesoscopic Systems

    Full text link
    We present some model calculations of persistent currents in disordered one- and two-dimensional mesoscopic systems. We use the tight-binding model and calculate numerically the currents in small systems for several values of disorder. Next we fit appropriate analytical formulae, and using them we find self- -sustaining currents and critical fields in larger, more realistic systems with different shapes of the Fermi surfaces.Comment: 16 pages, LaTeX, 8 figures, in print in J. Magn. Magn. Ma
    corecore