133 research outputs found

    A universal method for automated gene mapping

    Get PDF
    Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The protocol utilizes standard sequencers and genotyping software. We have established genome-wide FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping with a minimum of manual input and at comparatively low cost

    A reverse genetic screen in Drosophila using a deletion-inducing mutagen

    Get PDF
    We report the use of the cross-linking drug hexamethylphosphoramide (HMPA), which introduces small deletions, as a mutagen suitable for reverse genetics in the model organism Drosophila melanogaster. A compatible mutation-detection method based on resolution of PCR fragment-length polymorphisms on standard DNA sequencers is implemented. As the spectrum of HMPA-induced mutations is similar in a variety of organisms, it should be possible to transfer this mutagenesis and detection procedure to other model systems

    Analysis of accountability ratings for elementary schools Texas, USA: Considering the school growth and students’ demographics

    Get PDF
    The purpose of this quantitative study was to compare the Texas school accountability approach used from 2004 to 2011 based on a status-based model to a model that incorporates academic growth and student demographic variables. Information from three large urban school districts in Texas was analysed considering data from 398 elementary schools and the reading and mathematics TAKS test scores of 24,065 fourth and fifth grade students. Results indicated that the average school growth did not present significant differences between institutions with different accountability rating defined by TEA in 2011. Statistical differences were found when the average school growth was analysed disaggregating the students’ population by ethnicity, socioeconomic status, and English language proficiency. A systemic approach must prevail for designing an accountability system used to judge the quality of education delivered at an elementary school. This research was an analysis of how an accountability system could be useful to evaluate school effectiveness based on standard-based assessment results. However, the use of only one measurement to judge a school’s efficacy regarding the quality education provided to students may be a reductionist and narrow approach

    Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ahringer <it>C. elegans </it>RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1) mis-annotation (the clone with the retired gene name should be remapped to the actual target gene); 2) nonspecific PCR amplification; 3) cross-RNAi; 4) mis-operation such as sample loading error, <it>etc</it>.</p> <p>Results</p> <p>Here we performed a reliability analysis on the Ahringer <it>C. elegans </it>RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3%) of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54%) bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs). The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (<url>http://biocompute.bmi.ac.cn/CelRNAi/</url>) was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies.</p> <p>Conclusions</p> <p>Because of the potential unreliability of the Ahringer <it>C. elegans </it>RNAi feeding library, we strongly suggest the user examine the reliability information of the bacterial strains in the CelRNAi database before performing RNAi experiments, as well as the post-RNAi experiment analysis.</p

    High-Throughput Isolation and Mapping of C. elegans Mutants Susceptible to Pathogen Infection

    Get PDF
    We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor® as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5–8 megabase sub-chromosomal region

    Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy

    Get PDF
    Background: Effective highly active antiretroviral therapy (HAART) reduces human immunodeficiency virus (HIV) replication, restores CD4 +T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8 +T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8 +T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV.Methods: Peripheral blood mononuclear cells (PBMC) were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ) or interleukin-2 (IL-2) were enumerated by ELISPOT and phenotyped by flow cytometry.Results and Conclusions: The magnitude of the HIV-specific CD8 +T cell response ranged from < .01 to approximately 1.0% of PBMC and was significantly greater in the group with detectable viral replication. Stronger responses reflected higher numbers of CD8 +CD45RA -effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8 +T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8 +T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years
    corecore