1,476 research outputs found
Serially-regulated biological networks fully realize a constrained set of functions
We show that biological networks with serial regulation (each node regulated
by at most one other node) are constrained to {\it direct functionality}, in
which the sign of the effect of an environmental input on a target species
depends only on the direct path from the input to the target, even when there
is a feedback loop allowing for multiple interaction pathways. Using a
stochastic model for a set of small transcriptional regulatory networks that
have been studied experimentally, we further find that all networks can achieve
all functions permitted by this constraint under reasonable settings of
biochemical parameters. This underscores the functional versatility of the
networks.Comment: 9 pages, 3 figure
Dynamic Fluctuation Phenomena in Double Membrane Films
Dynamics of double membrane films is investigated in the long-wavelength
limit including the overdamped squeezing mode. We demonstrate that thermal
fluctuations essentially modify the character of the mode due to its nonlinear
coupling to the transversal shear hydrodynamic mode. The corresponding Green
function acquires as a function of the frequency a cut along the imaginary
semi-axis. Fluctuations lead to increasing the attenuation of the squeezing
mode it becomes larger than the `bare' value.Comment: 7 pages, Revte
Quantum Manipulations of Small Josephson Junctions
Low-capacitance Josephson junction arrays in the parameter range where single
charges can be controlled are suggested as possible physical realizations of
the elements which have been considered in the context of quantum computers. We
discuss single and multiple quantum bit systems. The systems are controlled by
applied gate voltages, which also allow the necessary manipulation of the
quantum states. We estimate that the phase coherence time is sufficiently long
for experimental demonstration of the principles of quantum computation.Comment: RevTex, 15 pages,4 postscript figures, uuencoded, submitted to Phys.
Rev. Lett., estimates of the experimental parameters correcte
Coiling Instabilities in Multilamellar Tubes
Myelin figures are densely packed stacks of coaxial cylindrical bilayers that
are unstable to the formation of coils or double helices. These myelin figures
appear to have no intrinsic chirality. We show that such cylindrical membrane
stacks can develop an instability when they acquire a spontaneous curvature or
when the equilibrium distance between membranes is decreased. This instability
breaks the chiral symmetry of the stack and may result in coiling. A
unilamellar cylindrical vesicle, on the other hand, will develop an
axisymmetric instability, possibly related to the pearling instability.Comment: 6 pages, 2 figure
Instability of Myelin Tubes under Dehydration: deswelling of layered cylindrical structures
We report experimental observations of an undulational instability of myelin
figures. Motivated by this, we examine theoretically the deformation and
possible instability of concentric, cylindrical, multi-lamellar membrane
structures. Under conditions of osmotic stress (swelling or dehydration), we
find a stable, deformed state in which the layer deformation is given by \delta
R ~ r^{\sqrt{B_A/(hB)}}, where B_A is the area compression modulus, B is the
inter-layer compression modulus, and h is the repeat distance of layers. Also,
above a finite threshold of dehydration (or osmotic stress), we find that the
system becomes unstable to undulations, first with a characteristic wavelength
of order \sqrt{xi d_0}, where xi is the standard smectic penetration depth and
d_0 is the thickness of dehydrated region.Comment: 5 pages + 3 figures [revtex 4
Tropical tele-connections to the Mediterranean climate and weather
Some strong natural fluctuations of climate in the Eastern Mediterranean (EM) region are shown to be connected to the major tropical systems. Potential relations between EM rainfall extremes to tropical systems, e.g. El Niño, Indian Monsoon and hurricanes, are demonstrated. For a specific event, high resolution modelling of the severe flood on 3-5 December 2001 in Israel suggests a relation to hurricane Olga. In order to understand the factors governing the EM climate variability in the summer season, the relationship between extreme summer temperatures and the Indian Monsoon was examined. Other tropical factors like the Red-Sea Trough system and the Saharan dust are also likely to contribute to the EM climate variability
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem
In classical information theory, entropy rate and Kolmogorov complexity per
symbol are related by a theorem of Brudno. In this paper, we prove a quantum
version of this theorem, connecting the von Neumann entropy rate and two
notions of quantum Kolmogorov complexity, both based on the shortest qubit
descriptions of qubit strings that, run by a universal quantum Turing machine,
reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in
the Communications in Mathematical Physics
(http://www.springerlink.com/content/1432-0916/
Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models
The distances over which biological molecules and their complexes can
function range from a few nanometres, in the case of folded structures, to
millimetres, for example during chromosome organization. Describing phenomena
that cover such diverse length, and also time scales, requires models that
capture the underlying physics for the particular length scale of interest.
Theoretical ideas, in particular, concepts from polymer physics, have guided
the development of coarse-grained models to study folding of DNA, RNA, and
proteins. More recently, such models and their variants have been applied to
the functions of biological nanomachines. Simulations using coarse-grained
models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure
- …
