1,287 research outputs found
Analysis of a Colonial Alphabet Book
This essay analyzes a non-canonical alphabet book written in the nineteenth century. The Colonial Alphabet For The Nursery was written for the child audience during the Victorian era. It associates a word with each letter of the alphabet, and the word is used in a sentence describing its corresponding illustration. This paper explains how the book portrays Great Britain as a world superpower by showing the other countries as poor and insignificant. Much of this alphabet book teaches children the various stereotypes about numerous ethnicities. This allows for them to grow up with misconceptions about diverse racial groups. This essay describes how the text encompasses the theme of nature to educate the child reader on the dominance of Britain
A comparison of generative and discriminative appliance recognition models for load monitoring
Appliance-level Load Monitoring (ALM) is essential, not only to optimize energy utilization, but also to promote energy awareness amongst consumers through real-time feedback mechanisms. Non-intrusive load monitoring is an attractive method to perform ALM that allows tracking of appliance states within the aggregated power measurements. It makes use of generative and discriminative machine learning models to perform load identification. However, particularly for low-power appliances, these algorithms achieve sub-optimal performance in a real world environment due to ambiguous overlapping of appliance power features. In our work, we report a performance comparison of generative and discriminative Appliance Recognition (AR) models for binary and multi-state appliance operations. Furthermore, it has been shown through experimental evaluations that a significant performance improvement in AR can be achieved if we make use of acoustic information generated as a by-product of appliance activity. We demonstrate that our a discriminative model FF-AR trained using a hybrid feature set which is a catenation of audio and power features improves the multi-state AR accuracy up to 10 %, in comparison to a generative FHMM-AR model
Low-Power Appliance Monitoring Using Factorial Hidden Markov Models
To optimize the energy utilization, intelligent energy management solutions require appliance-specific consumption statistics. One can obtain such information by deploying smart power outlets on every device of interest, however it incurs extra hardware cost and installation complexity. Alternatively, a single sensor can be used to measure total electricity consumption and thereafter disaggregation algorithms can be applied to obtain appliance specific usage information. In such a case, it is quite challenging to discern low-power appliances in the presence of high-power loads. To improve the recognition of low-power appliance states, we propose a solution that makes use of circuit-level power measurements. We examine the use of a specialized variant of Hidden Markov Model (HMM) known as Factorial HMM (FHMM) to recognize appliance specific load patterns from the aggregated power measurements. Further, we demonstrate that feature concatenation can improve the disaggregation performance of the model allowing it to identify device states with an accuracy of 90% for binary and 80% for multi-state appliances. Through experimental evaluations, we show that our solution performs better than the traditional event based approach. In addition, we develop a prototype system that allows real-time monitoring of appliance states
Yield, Area and Energy Optimization in Stt-MRAMs using failure aware ECC
Spin Transfer Torque MRAMs are attractive due to their non-volatility, high
density and zero leakage. However, STT-MRAMs suffer from poor reliability due
to shared read and write paths. Additionally, conflicting requirements for data
retention and write-ability (both related to the energy barrier height of the
magnet) makes design more challenging. Furthermore, the energy barrier height
depends on the physical dimensions of the free layer. Any variations in the
dimensions of the free layer lead to variations in the energy barrier height.
In order to address poor reliability of STT-MRAMs, usage of Error Correcting
Codes (ECC) have been proposed. Unlike traditional CMOS memory technologies,
ECC is expected to correct both soft and hard errors in STT_MRAMs. To achieve
acceptable yield with low write power, stronger ECC is required, resulting in
increased number of encoded bits and degraded memory efficiency. In this paper,
we propose Failure aware ECC (FaECC), which masks permanent faults while
maintaining the same correction capability for soft errors without increased
encoded bits. Furthermore, we investigate the impact of process variations on
run-time reliability of STT-MRAMs. We provide an analysis on the impact of
process variations on the life-time of the free layer and retention failures.
In order to analyze the effectiveness of our methodology, we developed a
cross-layer simulation framework that consists of device, circuit and array
level analysis of STT-MRAM memory arrays. Our results show that using FaECC
relaxes the requirements on the energy barrier height, which reduces the write
energy and results in smaller access transistor size and memory array area.
Keywords: STT-MRAM, reliability, Error Correcting Codes, ECC, magnetic memoryComment: This paper will be published in ACM JETC journa
Improving the quality of mental health services using patient outcome data: Making the most of HoNOS
Efforts to assess and improve the quality of mental health services are often hampered by a lack of information on patient outcomes. Most mental health services in England have been routinely collecting Health of the Nation Outcome Scales (HoNOS) data for some time. In this article we illustrate how clinical teams have used HoNOS data to identify areas where performance could be improved. HoNOS data have the potential to give clinical teams the information they need to assess the quality of care they deliver, as well as develop and test initiatives aimed at improving the services they provide
Leveraging intelligence from network CDR data for interference aware energy consumption minimization
Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo
A SON Solution for Sleeping Cell Detection Using Low-Dimensional Embedding of MDT Measurements
Automatic detection of cells which are in outage has been identified as one of the key use cases for Self Organizing Networks (SON) for emerging and future generations of cellular systems. A special case of cell outage, referred to as Sleeping Cell (SC) remains particularly challenging to detect in state of the art SON because in this case cell goes into outage or may perform poorly without triggering an alarm for Operation and Maintenance (O&M) entity. Consequently, no SON compensation function can be launched unless SC situation is detected via drive tests or through complaints registered by the affected customers. In this paper, we present a novel solution to address this problem that makes use of minimization of drive test (MDT) measurements recently standardized by 3GPP and NGMN. To overcome the processing complexity challenge, the MDT measurements are projected to a low-dimensional space using multidimensional scaling method. Then we apply state of the art k-nearest neighbor and local outlier factor based anomaly detection models together with pre-processed MDT measurements to profile the network behaviour and to detect SC. Our numerical results show that our proposed solution can automate the SC detection process with 93 accuracy
An In Depth Study into Using EMI Signatures for Appliance Identification
Energy conservation is a key factor towards long term energy sustainability.
Real-time end user energy feedback, using disaggregated electric load
composition, can play a pivotal role in motivating consumers towards energy
conservation. Recent works have explored using high frequency conducted
electromagnetic interference (EMI) on power lines as a single point sensing
parameter for monitoring common home appliances. However, key questions
regarding the reliability and feasibility of using EMI signatures for
non-intrusive load monitoring over multiple appliances across different sensing
paradigms remain unanswered. This work presents some of the key challenges
towards using EMI as a unique and time invariant feature for load
disaggregation. In-depth empirical evaluations of a large number of appliances
in different sensing configurations are carried out, in both laboratory and
real world settings. Insights into the effects of external parameters such as
line impedance, background noise and appliance coupling on the EMI behavior of
an appliance are realized through simulations and measurements. A generic
approach for simulating the EMI behavior of an appliance that can then be used
to do a detailed analysis of real world phenomenology is presented. The
simulation approach is validated with EMI data from a router. Our EMI dataset -
High Frequency EMI Dataset (HFED) is also released
A cell outage management framework for dense heterogeneous networks
In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner
- …
