771 research outputs found
Diquaternary Ammonium Compounds in Zeolite Synthesis: Cyclic and Polycyclic N-Heterocycles Connected by Methylene Chains
An additional dimension has been added to our long-standing studies in high silica zeolite synthesis via a guest/host synergism. We have created and studied the impact of making symmetric diquaternary ammonium compounds, by varying the chain length between nitrogen charge centers, and the heterocycle size and geometry containing the nitrogen. This allows the introduction of a second spatial parameter in the use of the charged organo-cation guest in the zeolite synthesis. The series of 15 diquaternary ammonium compounds (5 heterocycles synthesized onto chain lengths of C4−C6) were tested in a total of 135 zeolite syntheses reactions. Nine screening reactions were employed for each guest molecule, and the conditions built upon past successes in finding novel high silica zeolites via introduction of boron, aluminum, or germanium as substituting tetrahedral framework atoms for silicon. Eighteen different zeolite structures emerged from the studies. The use of specific chain lengths for derivatives of the pyrrolidine ring system produced novel zeolite materials SSZ-74 and 75
A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule
An unusual case of a diquaternary ammonium dication, with large bulky end groups built from the tropane moiety and connected by a C4 methylene chain, is found to reside in zeolite SSZ-35 (STF). The structure of the guest/host product is such that the tropane bicylic entities reside in the shallow cavities of the cages of the STF structure and the C4 methylene chain runs through the 10-ring (~5.5 Å) window that connects the cages. This is a most unusual (and energy-intensive) templating of a zeolite structure with the guest molecule spanning two unit cells. The unusual result was found by single crystal studies with the addition of the use of the SQUEEZE program to show a consistent fit for the guest molecule following from measured electron densities in the crystal structure work. These analyses were followed with MAS NMR studies to confirm the integrity of the diquaternary guest molecule in the host sieve. A few comparative diquaternary guest molecules in MFI zeolite are also studied
Nonaqueous Fluoride/Chloride Anion-Promoted Delamination of Layered Zeolite Precursors: Synthesis and Characterization of UCB-2
The delamination of layered zeolite precursor PREFER is demonstrated under mild nonaqueous conditions using a mixture of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride in N,N-dimethylformamide (DMF) as solvent. The delamination proceeds through a swollen material intermediate which is characterized using powder X-ray diffraction (PXRD). Subsequent addition of concentrated HCl at room temperature leads to synthesis of UCB-2 via delamination of the swollen PREFER material and is characterized using PXRD, transmission electron microscopy (TEM), and argon gas physisorption, which shows lack of microporosity in UCB-2. ^(29)Si magic angle spinning (MAS) NMR spectroscopy indicates lack of amorphization during delamination, as indicated by the entire absence of Q^2 resonances, and ^(27)Al MAS NMR spectroscopy shows exclusively tetrahedral aluminum in the framework following delamination. The delamination process requires both chloride and fluoride anions and is sensitive to solvent, working well in DMF. Experiments aimed at synthesizing UCB-2 using aqueous conditions previously used for UCB-1 synthesis leads to partial swelling and lack of delamination upon acidification. A similar lack of delamination is observed upon attempting synthesis of UCB-1 under conditions used for UCB-2 synthesis. The delamination of PREFER is reversible between delaminated and swollen states in the following manner. Treatment of as-made UCB-2 with the same reagents as used here for the swelling of PREFER causes the delaminated UCB-2 material to revert back to swollen PREFER. This causes the delaminated UCB-2 material to revert back to swollen PREFER. Altogether, these results highlight delamination as the reverse of zeolite synthesis and demonstrate the crucial role of noncovalent self-assembly involving the zeolitic framework and cations/anions/structure-directing agent and solvent during the delamination process
Physicochemical Properties and Catalytic Behavior of the Molecular Sieve SSZ-70
SSZ-70 is synthesized using 1,3-bis(isobutyl)imidazolium, 1,3-bis(cyclohexyl)imidazolium, and 1,3-bis(cycloheptyl)imidazolium structure directing agents (SDAs), and the solids obtained are characterized by powder X-ray diffraction (XRD), ^(29)Si magic angle spinning nuclear magnetic resonance (MAS NMR), electron microscopy, nitrogen and hydrocarbon adsorption, and thermogravimetric analyses. The physicochemical properties of SSZ-70 show that it is a new molecular sieve that has similarities to MWW-type materials. The catalytic behavior of SSZ-70 is evaluated through the use of the constraint index (CI) test. Distinct differences in the reactivity between Al-SSZ-70 and SSZ-25 (MWW) are observed and are the consequences of the structural differences between these two molecular sieves
Delamination of Layered Zeolite Precursors under Mild Conditions: Synthesis of UCB-1 via Fluoride/Chloride Anion-Promoted Exfoliation
New material UCB-1 is synthesized via the delamination of zeolite precursor MCM-22 (P) at pH 9 using an aqueous solution of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride at 353 K. Characterization by powder X-ray
diffraction, transmission electron microscopy, and nitrogen physisorption at 77 K indicates the same degree of delamination in UCB-1 as previously reported for delaminated zeolite precursors, which require a pH of greater than 13.5 and sonication in order to achieve
exfoliation. UCB-1 consists of a high degree of structural integrity via ^(29)Si MAS NMR and Fourier transform infrared spectroscopies, and no detectable formation of amorphous silica phase via transmission electron microscopy. Porosimetry measurements demonstrate a lack of
hysteresis in the N_2 adsorption/desorption isotherms and macroporosity in UCB-1. The new method is generalizable to a variety of Si:Al ratios and leads to delaminated zeolite precursor materials lacking amorphization
Studies of Aluminum Reinsertion into Borosilicate Zeolites with Intersecting Channels of 10- and 12-Ring Channel Systems
The work here describes the kinetic analyses of aluminum replacement for boron in a suite of borosilicate molecular sieves. While the method has been described before as a means of converting synthesized borosilicates (with weak inherent acidity) to aluminosilicates (with much stronger acid strength) when there are large pores in the structure, here we carry out the transformation under less than optimal replacement concentrations, in order to better follow the kinetics. We examined several zeolite structures with boundary conditions of boron MEL where there are only 10-ring (or intermediate) pore structures and no Al is taken up, to multidimensional large pore zeolites, like boron beta, where Al substitution can occur everywhere. We also studied materials with both intermediate and large pores, SSZ-56, 57, 70, and 82. In the case of 57 up to 90% of the structure is made up of boron MEL. We observe that the pH drop is proportional to the Al reinsertion and is the same for all zeolites we studied. In one case, we compared a zeolite (SSZ-24) with boron and then no boron sites and found that Al does not go into defect sites. It was again confirmed (shown in earlier work) that Al will go into nest sites created by boron hydrolysis out of the substrate before Al treatment. Along those lines we also made two new observations: (1) the profile for Al uptake, as followed by pH drop, is the same kinetically, whether the boron is there or not; and (2) NMR showed that the boron is leaving the structure faster than Al can go back in (SSZ-33 study), even when we treat a material with boron in the lattice
Cage-defining Ring: A Molecular Sieve Structural Indicator for Light Olefin Product Distribution from the Methanol-to-Olefins Reaction
The methanol-to-olefins (MTO) process produces high-value-added light olefins from nonpetroleum sources. Acidic zeotypes containing cages bounded by 8-ring (small-pore) windows can effectively catalyze the MTO reaction, since their cages can accommodate the necessary aromatic intermediates that produce the light olefin products that escape. While progress on the mechanisms of the MTO reaction continues, zeotype structure–reaction property relationships have yet to be elucidated. Here, we report MTO reaction results from various small-pore, cage-containing silicoaluminophosphate/metalloaluminophosphates (SAPO/MAPOs) and zeolites under the same reaction conditions. The MTO behaviors of microporous materials having the following topologies are investigated: LEV, ERI, CHA, AFX, SFW, AEI, DDR, RTH, ITE, SAV, LTA, RHO, KFI, and UFI. The previous observation that light olefin product distributions from a series of small-pore, cage-containing zeolites can be classified into four structural categories is further supported by the results shown here from zeolite structures not investigated in the previous study and SAPO and MAPO materials with isostructural frameworks to all the zeolites. Additionally, these data reveal that light olefin product distributions are very similar over a given topology independent of framework composition. To develop a structure–property relationship between the framework topology and the MTO light olefin product distribution, the concept of the cage-defining ring size is introduced. The cage-defining ring size is defined as the minimum number of tetrahedral atoms of the ring encircling the center of the framework cages in the molecular sieve topology. It is shown that the cage-defining ring size correlates with MTO light olefin product distribution
Novel surfactant-free route to delaminated all-silica and titanosilicate zeolites derived from a layered borosilicate MWW precursor
Layered borosilicate zeolite precursor ERB-1P (Si/B = 11) is delaminated via simultaneous deboronation and SDA removal, to yield material DZ-1 consisting of silanol nests, using a simple aqueous Zn(NO_3)_2 treatment. Characterization of this synthesis process by PXRD shows loss of long-range order, and transmission electron microscopy (TEM) demonstrates transformation of rectilinear layers in the layered zeolite precursor to single and curved layers in the delaminated material. N_2 physisorption confirms the expected decrease of micropore volume and increase in external surface area for delaminated materials relative to their calcined 3D zeolite counterpart. Elemental analysis shows loss of B and absence of Zn in the delaminated material. Resonances corresponding to silanol nests are evident via^(29)Si solid-state NMR spectroscopy in DZ-1, which should be located within 12-MR pockets near the external surface. We have successfully utilized these nests as tetrahedral recognition sites for incorporation of Ti within an isolated framework coordination environment in material Ti-DZ-1. Diffuse-reflectance ultraviolet (DR-UV) spectroscopy of Ti-DZ-1 confirms isolated framework Ti sites, which are assigned to bands in the range of 210 nm–230 nm. Infrared spectra of Ti-DZ-1 consist of a distinct absorption band at 960 cm^(−1), which is absent in DZ-1 prior to Ti incorporation and has been previously correlated with the presence of framework Ti species. Infrared spectra after pyridine adsorption demonstrate bands consistent with Lewis-acid sites in the resulting Ti-substituted delaminated zeolite. The accessibility of these Lewis-acid sites is confirmed when using Ti-DZ-1 as a catalyst for cyclohexene epoxidation using tert-butyl hydroperoxide as the organic oxidant – a reaction for which both DZ-1 and TS-1 are inactive
Synthesis and structural characterization of Zn-containing DAF-1
A study exploring the use of ionic liquid reactions based on imidazolium halides in molecular sieve synthesis has produced a novel zincoaluminophosphate material with an open DFO-type framework structure. This framework structure had only been observed previously in the magnesioaluminophosphate system (Mg-DAF-1) where decamethonium was used as the structure directing agent. The new Zn-DAF-1 material has been characterized using chemical and thermogravimetric analysis and ^(13)C, ^(19)F, ^(27)Al and ^(31)P MAS NMR techniques. Structure analysis (P6/mcc, a = 22.2244(1) Å, c = 42.3293(3) Å) using synchrotron powder diffraction data not only confirmed the framework structure, but also revealed the locations of the Al, P and Zn atoms in the framework, the N,N′-di-isopropyl-imidazolium (DIPI) ions in the pores, some fluoride ions associated with double 4-rings, and some water molecules and anions filling the remaining space. This level of structural detail had not been possible in the Mg-DAF-1 material. Four different locations for the DIPI cation were found in the two 12-ring channels and Zn was found to substitute for only one of the six crystallographically distinct Al sites to yield the approximate crystal chemical formula |(DIPI)_(17)(OH,F)_(11)(H2O)_(23)|[Zn_6Al_(126)P_(132)O_(528)]-DFO
- …
