31 research outputs found
A VMD and LSTM based hybrid model of load forecasting for power grid security
As the basis for the static security of the power grid, power load forecasting directly affects the safety of grid operation, the rationality of grid planning, and the economy of supply-demand balance. However, various factors lead to drastic changes in short-term power consumption, making the data more complex and thus more difficult to forecast. In response to this problem, a new hybrid model based on Vari-ational mode decomposition (VMD) and Long Short-Term Memory (LSTM) with seasonal factors elimination and error correction is proposed in this paper. Comprehensive case studies on four real-world load datasets from Singapore and the United States are employed to demonstrate the effectiveness and practicality of the proposed hybrid model. The experimental results show that the prediction accuracy of the proposed model is significantly higher than that of the contrast models. Index Terms-Power grid security, short-term load forecasting , seasonal factors elimination, error correction
Clinical and radiological characteristics of pediatric COVID-19 before and after the Omicron outbreak: a multi-center study
IntroductionThe emergence of the Omicron variant has seen changes in the clinical and radiological presentations of COVID-19 in pediatric patients. We sought to compare these features between patients infected in the early phase of the pandemic and those during the Omicron outbreak.MethodsA retrospective study was conducted on 68 pediatric COVID-19 patients, of which 31 were infected with the original SARS-CoV-2 strain (original group) and 37 with the Omicron variant (Omicron group). Clinical symptoms and chest CT scans were examined to assess clinical characteristics, and the extent and severity of lung involvement.ResultsPediatric COVID-19 patients predominantly had normal or mild chest CT findings. The Omicron group demonstrated a significantly reduced CT severity score than the original group. Ground-glass opacities were the prevalent radiological findings in both sets. The Omicron group presented with fewer symptoms, had milder clinical manifestations, and recovered faster than the original group.DiscussionThe clinical and radiological characteristics of pediatric COVID-19 patients have evolved with the advent of the Omicron variant. For children displaying severe symptoms warranting CT examinations, it is crucial to weigh the implications of ionizing radiation and employ customized scanning protocols and protective measures. This research offers insights into the shifting disease spectrum, aiding in the effective diagnosis and treatment of pediatric COVID-19 patients
Guidelines for burn rehabilitation in China
Abstract
Quality of life and functional recovery after burn injury is the final goal of burn care, especially as most of burn patients survive the injury due to advanced medical science. However, dysfunction, disfigurement, contractures, psychological problems and other discomforts due to burns and the consequent scars are common, and physical therapy and occupational therapy provide alternative treatments for these problems of burn patients. This guideline, organized by the Chinese Burn Association and Chinese Association of Burn Surgeons aims to emphasize the importance of team work in burn care and provide a brief introduction of the outlines of physical and occupational therapies during burn treatment, which is suitable for the current medical circumstances of China. It can be used as the start of the tools for burn rehabilitation.</jats:p
Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller
The Grey Wolf Optimizer (GWO) is a well-known metaheuristic algorithm that currently has an extremely wide range of applications. However, with the increasing demand for accuracy, its shortcomings of low exploratory and population diversity are increasingly exposed. A modified Grey Wolf Optimizer (M-GWO) is proposed to tackle these weaknesses of the GWO. The M-GWO introduces mutation operators and different location-update strategies, achieving a balance between exploration and development. The experiment validated the performance of the M-GWO using the CEC2017 benchmark function and compared the results with five other advanced metaheuristic algorithms: the Improved Grey Wolf Optimizer (IGWO), GWO, Whale Optimization Algorithm (WOA), Dung Beetle Optimizer (DBO), and Harris Hawks Optimization (HHO). The performance results indicate that the M-GWO has a better performance than competitor algorithms on all 29 functions in dimensions 30 and 50, except for function 26 in dimension 30 and function 28 in dimension 50. Compared with competitor algorithms, the proposed M-GWO is the most effective algorithm, with an overall effectiveness of 96.5%. In addition, in order to show the value of the M-GWO in the practical engineering field, the M-GWO is used to optimize the PI controller parameters of the current loop of the permanent magnet synchronous motor (PMSM) system. By designing a PI controller parameter optimization scheme based on the M-GWO, the fluctuation of the q-axis current and d-axis current of the motor is reduced. The designed scheme reduces the q-axis fluctuation to around −2~1 A and the d-axis current fluctuation to around −2~2 A. By comparing the current-tracking errors of the q-axis and d-axis under different algorithms, the validity of the optimized parameters of the M-GWO is proved
Clamping Force Control Strategy of Electro-Mechanical Brake System Using VUF-PID Controller
Clamping force control is one of the key technologies in the algorithm design and implementation of electro-mechanical braking system, whose control effects directly affect the vehicle braking performance and safety performance. In order to improve the clamping force control performance of electro-mechanical braking (EMB) system, an EMB clamping force control method based on Variable universe adaptive fuzzy PID (VUF-PID) controller is proposed, and stretching factors are added to the fuzzy PID control. According to the operation of the controlled object, the fuzzy theory domain can be adjusted in real time to keep the system in the proper parameter value and improve the adaptive ability of the system. The response characteristics and effectiveness of clamping force under step braking condition, gear switching braking condition and sine braking condition are verified by simulation experiments using MATLAB/Simulink. The results show that the proposed VUF-PID control method has strong tracking characteristics and stability characteristics, and meet the braking requirements under different braking conditions
Formal Analysis and Verification of Airborne Software Based on DO-333
With rapid technological advances in airborne control systems, it has become imperative to ensure the reliability, robustness, and adaptability of airborne software since failure of these software could result in catastrophic loss of property and life. DO-333 is a supplement to the DO-178C standard, which is dedicated to guiding the application of formal methods in the review and analysis of airborne software development processes. However, DO-333 lacks theoretical guidance on how to choose appropriate formal methods and tools to achieve verification objectives at each stage of the verification process, thereby limiting their practical application. This paper is intended to illustrate the formal methods and tools available in the verification process to lay down a general guide for the formal development and verification of airborne software. We utilized the Air Data Computer (ADC) software as the research object and applied different formal methods to verify software lifecycle artifacts. This example explains how to apply formal methods in practical applications and proves the effectiveness of formal methods in the verification of airborne software
Structure-Actuator Integrated Design of Piezo-Actuated Composite Plate Wing for Active Shape Control
Formal Analysis and Verification of Airborne Software Based on DO-333
With rapid technological advances in airborne control systems, it has become imperative to ensure the reliability, robustness, and adaptability of airborne software since failure of these software could result in catastrophic loss of property and life. DO-333 is a supplement to the DO-178C standard, which is dedicated to guiding the application of formal methods in the review and analysis of airborne software development processes. However, DO-333 lacks theoretical guidance on how to choose appropriate formal methods and tools to achieve verification objectives at each stage of the verification process, thereby limiting their practical application. This paper is intended to illustrate the formal methods and tools available in the verification process to lay down a general guide for the formal development and verification of airborne software. We utilized the Air Data Computer (ADC) software as the research object and applied different formal methods to verify software lifecycle artifacts. This example explains how to apply formal methods in practical applications and proves the effectiveness of formal methods in the verification of airborne software.</jats:p
