233 research outputs found
Connected components of the moduli spaces of Abelian differentials with prescribed singularities
Consider the moduli space of pairs (C,w) where C is a smooth compact complex
curve of a given genus and w is a holomorphic 1-form on C with a given list of
multiplicities of zeroes. We describe connected components of this space.
This classification is important in the study of dynamics of interval
exchange transformations and billiards in rational polygons, and in the study
of geometry of translation surfaces.Comment: 42 pages, 12 figures, LaTe
On second order elliptic equations with a small parameter
The Neumann problem with a small parameter
is
considered in this paper. The operators and are self-adjoint second
order operators. We assume that has a non-negative characteristic form
and is strictly elliptic. The reflection is with respect to inward
co-normal unit vector . The behavior of
is effectively described via
the solution of an ordinary differential equation on a tree. We calculate the
differential operators inside the edges of this tree and the gluing condition
at the root. Our approach is based on an analysis of the corresponding
diffusion processes.Comment: 28 pages, 1 figure, revised versio
Geometric representation of interval exchange maps over algebraic number fields
We consider the restriction of interval exchange transformations to algebraic
number fields, which leads to maps on lattices. We characterize
renormalizability arithmetically, and study its relationships with a
geometrical quantity that we call the drift vector. We exhibit some examples of
renormalizable interval exchange maps with zero and non-zero drift vector, and
carry out some investigations of their properties. In particular, we look for
evidence of the finite decomposition property: each lattice is the union of
finitely many orbits.Comment: 34 pages, 8 postscript figure
Normal origamis of Mumford curves
An origami (also known as square-tiled surface) is a Riemann surface covering
a torus with at most one branch point. Lifting two generators of the
fundamental group of the punctured torus decomposes the surface into finitely
many unit squares. By varying the complex structure of the torus one obtains
easily accessible examples of Teichm\"uller curves in the moduli space of
Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves.
A p-adic origami is defined as a covering of Mumford curves with at most one
branch point, where the bottom curve has genus one. A classification of all
normal non-trivial p-adic origamis is presented and used to calculate some
invariants. These can be used to describe p-adic origamis in terms of glueing
squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer
Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmuller geodesic flow
We compute the sum of the positive Lyapunov exponents of the Hodge bundle
with respect to the Teichmuller geodesic flow. The computation is based on the
analytic Riemann-Roch Theorem and uses a comparison of determinants of flat and
hyperbolic Laplacians when the underlying Riemann surface degenerates.Comment: Minor corrections. To appear in Publications mathematiques de l'IHE
- …
