233 research outputs found

    Right-angled billiards and volumes of moduli spaces of quadratic differentials on CP¹

    No full text

    Connected components of the moduli spaces of Abelian differentials with prescribed singularities

    Full text link
    Consider the moduli space of pairs (C,w) where C is a smooth compact complex curve of a given genus and w is a holomorphic 1-form on C with a given list of multiplicities of zeroes. We describe connected components of this space. This classification is important in the study of dynamics of interval exchange transformations and billiards in rational polygons, and in the study of geometry of translation surfaces.Comment: 42 pages, 12 figures, LaTe

    Lower bounds for Lyapunov exponents of flat bundles on curves

    No full text

    On second order elliptic equations with a small parameter

    Full text link
    The Neumann problem with a small parameter (1ϵL0+L1)uϵ(x)=f(x)forxG,.uϵγϵ(x)G=0(\dfrac{1}{\epsilon}L_0+L_1)u^\epsilon(x)=f(x) \text{for} x\in G, .\dfrac{\partial u^\epsilon}{\partial \gamma^\epsilon}(x)|_{\partial G}=0 is considered in this paper. The operators L0L_0 and L1L_1 are self-adjoint second order operators. We assume that L0L_0 has a non-negative characteristic form and L1L_1 is strictly elliptic. The reflection is with respect to inward co-normal unit vector γϵ(x)\gamma^\epsilon(x). The behavior of limϵ0uϵ(x)\lim\limits_{\epsilon\downarrow 0}u^\epsilon(x) is effectively described via the solution of an ordinary differential equation on a tree. We calculate the differential operators inside the edges of this tree and the gluing condition at the root. Our approach is based on an analysis of the corresponding diffusion processes.Comment: 28 pages, 1 figure, revised versio

    Geometric representation of interval exchange maps over algebraic number fields

    Full text link
    We consider the restriction of interval exchange transformations to algebraic number fields, which leads to maps on lattices. We characterize renormalizability arithmetically, and study its relationships with a geometrical quantity that we call the drift vector. We exhibit some examples of renormalizable interval exchange maps with zero and non-zero drift vector, and carry out some investigations of their properties. In particular, we look for evidence of the finite decomposition property: each lattice is the union of finitely many orbits.Comment: 34 pages, 8 postscript figure

    Normal origamis of Mumford curves

    Full text link
    An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer
    corecore